УДК 539.17

ИССЛЕДОВАНИЕ ВЫХОДОВ DD-РЕАКЦИЙ ИЗ ГЕТЕРОСТРУКТУРЫ Pd/PdO:D_x ПРИ НИЗКИХ ЭНЕРГИЯХ НА УСТАНОВКЕ ГЕЛИС

А. В. Багуля, О. Д. Далькаров, М. А. Негодаев,

А.С. Русецкий, А.П. Чубенко

Приводятся результаты измерения выходов DD-реакций из гетероструктуры $Pd/PdO:D_x$ в диапазоне энергий 10-25 кэВ. Измерялись потоки нейтронов и протонов с помощью нейтронного детектора на основе He-3 счетчиков и пластикового трекового детектора CR-39. Сравнения с расчетами показали наличие значительных эффектов усиления выходов DD-реакций. Потенциал экранирования для данной гетероструктуры при данных условиях эксперимента оценен в диапазоне $U_e = 630 - 980$ эВ.

Ключевые слова: DD-реакции, потенциал экранирования, потоки протонов и нейтронов.

Измерение сечений ядерных реакций синтеза при низких энергиях представляет значительный интерес как для создания энергетических установок нового поколения, так и для понимания процессов, протекающих внутри звезд (обзор раннего периода исследований в этой области можно найти, например, в [1–4]). Напомним, что прямое измерение сечений при малых энергиях затруднено в связи с проблемами обеспечения устойчивости ускорительных пучков низких энергий. Поэтому сечения ядерных реакций при низких энергиях (≤ 100 кэВ) обычно находят с помощью экстраполяции из области высоких энергий, где эти сечения могут быть измерены в экспериментах на ускорителях.

Недавние эксперименты на ускорителях при энергиях < 10 кэВ показали, что в случае использования твердотельных мишеней с имплантированным в них дейтерием наблюдаются значительные эффекты увеличения вероятности протекания DD-реакции по сравнению с экстраполяцией. Степень усиления выхода DD-реакции характеризует

ФИАН, 119991, Москва, Ленинский пр-т, 53; e-mail: rusets@lebedev.ru.

т.н. потенциал экранирования, который определяется как добавочная энергия, необходимая ядру дейтерия для преодоления кулоновского барьера.

В работах Райола и др. [5, 6] выходы DD-реакции и потенциалы экранирования изучались систематически для почти 70-ти элементов Периодической системы, включая металлы и неметаллы. Было обнаружено, что большинство изученных металлов имеют "большой" потенциал экранирования, U_e ≥ 100 эВ, за исключением металлов 4 группы (Ti, Zr, Hf) и 11 группы (Cu, Ag, Au). В то же время следует отметить, что ускоритель, использованный в [5, 6], позволял достигать токов дейтронов лишь от 1 до 54 мкА, что минимизировало эффекты усиления, зависящие от плотности тока на мишени.

Касаги и др. [7, 8], используя низкоэнергетический ускоритель с большими токами (ток ионов – 60–400 мкА), измеряли выходы реакции D(d,p)T в некоторых металлах и оксидах металлов при энергиях $E_{lab} \ge 2.5$ кэВ. Было обнаружено, что величина потенциала экранирования при данной интенсивности пучка сильно зависит от подвижности дейтерия в металлах. В случае металлов с малой подвижностью дейтерия и высокой энергией активации диффузии дейтеронов (Ti, Au) потенциалы экранирования были низкими, 65 ± 15 эВ и 70 ± 10 эВ, соответственно. Эти потенциалы экранирования U_e лишь в 2 раза выше величины для газовой (D_2) мишени. Напротив, для мишеней Pd и PdO с высокой подвижностью дейтерия $U_e = 310$ и 600 эВ, соответственно [8]. Таким образом, экспериментальные данные показывают, что протекание процессов синтеза ядер дейтерия в твердотельных и газовых мишенях сильно различаются. При этом наибольшее усиление DD-реакции продемонстрировали материалы с большой степенью подвижности водорода (Pd и PdO).

Установка ГЕЛИС [9], созданная в Физическом институте им. П. Н. Лебедева РАН, позволяет получать непрерывные пучки ионов с током до 50 мА и энергиями до 50 кэВ и предназначена для проведения широкого спектра экспериментов, таких как изучение столкновений легких ядер с энергией в десятки кэВ, изучение элементарных и коллективных процессов в ионно-пучковой плазме, изучение взаимодействий ионного пучка с различными материалами, модификация их поверхности и получение методом ионнолучевого распыления тонкопленочных покрытий.

Основной частью установки ГЕЛИС является ускоритель ионов, который включает в себя: 1) ионный источник с оборудованием, обеспечивающим его питание; 2) систему фокусировки ионного пучка; 3) вакуумную систему; 4) диагностическую аппаратуру для измерения тока и энергии ионного пучка. Образцы Pd/PdO:D_x размером $2.5 \times 1 \text{ см}^2$ готовились путем термического окисления Pd фольги (99.95% чистоты, толщиной 50 мкм). В результате на поверхности фольги образуется окисная плёнка PdO толщиной ~50 нм. Затем образцы насыщались дейтерием с помощью электролиза в 0.3M растворе LiOD в D₂O с Pt анодом при плотности тока $j = 20 \text{ мA/cm}^2$ и температуре ~290 K в ячейке с разделенными катодным и анодным пространствами. После 20 мин насыщения дейтерием до степени $x = D/Pd \sim 0.73$ образцы промывались в тяжёлой воде и охлаждались жидким азотом до температуры T = 77 K (охлаждение образца до температуры жидкого азота необходимо для замедления выхода дейтерия, чтобы исследовать влияние ионизирующего излучения на процесс десорбции). Затем мишень устанавливалась в держатель, напротив закрепленных детекторов CR-39, и помещалась в экспериментальную вакуумную камеру установки ГЕЛИС для последующих исследований. Затрачиваемое на монтаж мишени время не превышало 30 минут.

Для детектирования продуктов DD-реакций

$$d + d \rightarrow p(3 \text{ MeV}) + T(1 \text{ MeV}),$$
 (1)

$$d + d \rightarrow n(2.45 \text{ MeV}) +^3 He(0.8 \text{ MeV})$$
 (2)

использовались многоканальный детектор нейтронов на основе счетчиков с наполнением He-3 и трековый детектор CR-39.

Схемы расположения детекторов и мишени на установке ГЕЛИС показаны на рис. 1(а) и рис. 1(б).

Для калибровки He-3 детектора использовался источник нейтронов Cf-252 с активностью $4.8 \cdot 10^4$ n/c в телесный угол 4π , который помещался на место мишени.

При расположении He-3 детектора в положении 1 (R1 = 120 см) эффективность регистрации нейтронов оказалась равной $\eta_{n1} = 0.1\%$. При расположении He-3 детектора в положении 2 (R2 = 30 см) эффективность регистрации нейтронов оказалась равной $\eta_{n2} = 0.4\%$.

Три детектора CR-39 (1, 2, 3) (см. рис. 1(б)) устанавливаются с трех сторон исследуемого образца (4) в держателе с манипулятором, который позволяет перемещать образец поперек пучка ионов (6). Детекторы 1 и 2, расположенные над образцом, имеют покрытия 11 (или 22) и 55 (или 66) мкм Al, соответственно. Они предназначены для регистрации заряженных частиц и нейтронов, вылетевших с облученной поверхности образца против направления пучка. Детектор 3, расположенный под образцом,

Рис. 1: (a) Схема расположения He-3 детектора на установке ГЕЛИС. 1 и 2 – два положения He-3 детектора (R1 = 120 см, R2 = 30 см), 3 – место расположения мишени, 4 – контуры установки ГЕЛИС; (б) Схема расположения мишени и трековых детекторов в пучке ионов в установке ГЕЛИС. 1, 2, 3 – трековые детекторы CR-39 с различными покрытиями; 4 – мишень; 5 – манипулятор; 6 – пучок ионов; 7 – стальная подложка; 8 – диафрагма.

имеет покрытие 11 (или 33) мкм Al. Он предназначен для регистрации нейтронов, вылетевших с облученной поверхности образца в направлении пучка. Покрытия разной толщины позволяют не только защитить поверхность детектора от прямого попадания распыленных частиц образца, но и получить смещение энергетического спектра заряженных частиц на известную величину потерь энергии в соответствующем фильтре.

Калибровка детектора CR-39 была проведена с помощью протонного пучка ускорителя Ван-де-Граафа ($E_p = 0.75 - 3.0 \text{ M}$ эВ), стандартных α -источников ($E_{\alpha} = 2 - 7.7 \text{ M}$ эВ) и пучка циклотрона ($E_{\alpha} = 8 - 30 \text{ M}$ эВ) в НИИЯФ МГУ. После облучения детекторы травились в растворе 6M NaOH в H₂O при 70 °C в течение 7 ч. Измерение диаметров треков частиц проведено с помощью измерительного комплекса ПАВИКОМ. На рис. 2 представлены результаты калибровки, т.е. зависимости диаметров треков протонов и α -частиц от их энергии.

Рис. 2: Зависимости диаметров треков α-частиц и протонов от их энергии. Трековый детектор CR-39 травился 7 ч в растворе NaOH в H₂O при 70 °C.

Измерения с источником Pu-239, помещенным на место образца, показали, что детекторы 1 и 2, расположенные над образцом, имеют эффективность детектирования заряженных частиц $\eta_p = 0.026$.

Облучение трекового детектора CR-39 нейтронами проводилось с помощью источника Cf-252 с активностью 120 n/с в телесный угол 4π ср. Полный флюенс нейтронов за время облучения составил 7×10^8 n/cm². Быстрые нейтроны от источника испытывают упругое рассеяние на атомах водорода в радиаторе и в самом детекторе, при этом образуются протоны отдачи, которые регистрируются детектором.

Средняя эффективность регистрации быстрых нейтронов трековым детектором оказалась равной $\eta_n = 10^{-4}$.

Для вычисления выхода протонов из толстой мишени (катода), бомбардируемой дейтронами с энергией *E*_d, мы использовали формулу [10]:

$$Y_b(E_d) = \int_{0}^{E_d} N_D(x) \sigma_{\rm lab}(E) (dE/dx)^{-1} dE,$$
(3)

7

где $N_D(x)$, $\sigma_{\rm lab}(E)$ и dE/dx – плотность дейтронов в катоде, сечение DD-реакции и тормозная способность дейтронов в материале мишени, соответственно. Параметризация Боша–Халле использовалась для экстраполяции сечения при низких энергиях [11]. Тормозная способность дейтронов предполагалась пропорциональной скорости дейтронов при низкой энергии, что подтверждается данными для различных мишеней, по меньшей мере, до $E_d = 1.0$ кэВ [12].

С учетом того, что в процессе облучения и повышения температуры мишени начальная концентрация дейтерия в ней может измениться, для расчетов используется эффективная концентрация дейтерия. Эффективная концентрация дейтерия определяется как: $N_D(eff) = k(W,T)N_D(x)$, где T и W – температура и мощность на поверхности мишени. При этом коэффициент k может быть записан как:

$$k(W,T) = \exp\left[-\frac{\epsilon_d \Delta T}{k_B T_m T_0} * (W_m/W_x)\right],\tag{4}$$

где ϵ_d – энергия активации выхода дейтрона с поверхности мишени; T_m – максимальная температура на поверхности мишени, $T_0 = 290$ К – начальная температура мишени, $\Delta T = T_m - T_0$, W_m – максимальная мощность при $E_d = 25$ кэВ, $I_m = 0.2$ мА; W_x – значение мощности при других (меньших) значениях тока и напряжения. Величина ϵ_d равняется 0.086 эВ для Pd.

Зависимость потоков протонов и нейтронов, испущенных по пучку и против пучка (см. поз. 1,2 рис. 1(б)), от энергии показана на рис. 3. Наблюдается анизотропия в вылете продуктов DD-реакции, испущенных по пучку и против пучка. Также заметна разница в потоках нейтронов и протонов, характеризующая соотношение вероятностей протекания DD-реакции по каналам (1) и (2). Это указывает на то, что, возможно, DD-реакция идет не через образование составного ядра He-4^{*}, а реализуется механизм неполного проникновения дейтрона в ядро.

Зависимость выхода DD-реакции из мишени $Pd/PdO:D_x$ от энергии дейтронов приведена на рис. 4. Там же приведены значения выходов DD-реакции, рассчитанные для данных условий эксперимента по (3).

Коэффициент усиления определяется как

$$f(E) = Y_{\exp}(E)/Y_b(E) = \exp[\pi\eta(E)U_e/E],$$
(5)

где $Y_{\exp}(E)$ – экспериментальный выход DD-протонов, $Y_b(E)$ – выход при той же энергии, определенный в соответствии с экстраполяцией Боша–Халле [11]; $2\pi\eta = 31.29Z^2(\mu/E)^{1/2}$ – параметр Зоммерфельда (здесь Z – заряд дейтрона, μ и E – приведенная масса и энергия дейтрона, соответственно).

Рис. 3: Зависимость потоков протонов и нейтронов, испущенных из мишени Pd/PdO:D_x по пучку и против пучка, от энергии. ■ – поток нейтронов по пучку, • – поток нейтронов против пучка, ▲ – поток протонов против пучка. Измерения проведены трековым детектором CR-39.

Потенциал экранирования U_e оценивался по полуэмпирической формуле [13]:

$$U_e = (T/T_0)^{-1/2} [a \ln(y) + b], \tag{6}$$

где a = 145.3 и b = 71.2 – численные константы и $y = ky_0(J_d/J_0)$ (здесь $k = \exp(\epsilon_d \Delta T/k_B T T_0)$, $\epsilon_d = 0.086$ эВ – энергия активации дейтрона в палладии, $y_0 = Me/D = 6.7$ – отношение концентраций атомов металла и дейтерия в мишени при $T_0 = 290$ К и $J_0 = 0.03$ mA/cm²), J_d – плотность тока дейтронов.

В случае DD-реакции потенциал экранирования можно записать как:

$$U_e = \ln f(E)^{3/2} / 15.7, \tag{7}$$

где *E* (кэВ) – энергия дейтрона в с.ц.и. Подставив в (7) данные по коэффициентам усиления DD-реакции, можно оценить потенциалы экранирования, полученные в конкретном эксперименте.

Рис. 4: Зависимость выходов DD-реакции из мишени $Pd/PdO:D_x$ от энергии пучка D^+ . \blacksquare – измеренный выход DD-реакции по пучку, • – выход DD-реакции, рассчитанный для данной энергии по (3).

Рис. 5: Фотография мишени $Pd/PdO:D_x$ после облучения пучком D^+ (светлое пятно в центре соответствует области с повышенной плотностью тока).

Коэффициенты усиления и потенциалы экранирования в мишени Pd/PdO:D_x представлены в табл. 1.

Таблица 1

Энергия пучка, E_d ,	10	15	20	25
кэВ				
Плотность тока	0.23	0.2	0.21	0.21
пучка, J_d , м ${ m A}/{ m cm}^2$				
Коэффициент	4	1.6	1.4	1.3
усиления, <i>f</i>				
Потенциал	980	630	670	760
экранирования U _e , эВ				
Потенциал	114-516	114-516	114 - 516	114-516
экранирования				
(расчет), U_e , эВ				

Расчет потенциалов экранирования был проведен для двух "крайних" условий: 1) при T = 1887 К – температура плавления палладия в области пучка и 2) T = 350 К – температура, зарегистрированная термопарным термометром на краю мишени.

Расчет при плотности тока пучка дейтронов 0.25 мА/см² дал величину потенциала экранирования в диапазоне $U_e = 114 - 516$ эВ, что намного меньше экспериментальных значений. Для их достижения, необходимо подставить в формулу (6) величину плотности тока дейтронов $J_d = 1 - 10$ мА/см² и тогда значение потенциала экранирования находится в диапазоне $U_e = 700 - 990$ эВ. Увеличение плотности тока на мишень Pd/PdO:D_x в процессе облучения мишени наблюдается экспериментально и может происходить из-за дополнительной фокусировки пучка в результате десорбции дейтерия, стимулированной облучением. На фотографии мишени после облучения пучком D^+ (рис. 5) видно, что на области попадания пучка, ограниченного диафрагмой диаметром 6 мм, имеется более яркое пятно диаметром 2 мм с повышенной плотностью тока, обусловленное самофокусировкой пучка вблизи поверхности мишени.

Таким образом, в данной работе при исследовании зависимости выходов продуктов DD-реакции из гетероструктуры Pd/PdO:D_x от энергии дейтронов в диапазоне 10–25 кэВ получены значительные эффекты усиления по сравнению с теоретической экстраполяцией. Потенциал экранирования для данной гетероструктуры при данных условиях эксперимента оценен в диапазоне $U_e = 630 - 980$ эВ. Работа выполнена при поддержке Министерства образования и науки (государственный контракт N 16.518.11.7104 по мероприятию 1.8 ФЦП "Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007–2013 годы").

ЛИТЕРАТУРА

- [1] В. А. Царев, УФН **160**(11), 1 (1990).
- [2] В. А. Царев, УФН **162**(10), 6 (1992).
- [3] V. A. Tsarev and D. H. Worledge, Fusion Technology 22, 138 (1991).
- [4] V. A. Chechin, V. A. Tsarev, M. Rabinovitz, and Y. E. Kim, Int. Journal of Theor. Phys. 33(3), 617 (1994).
- [5] F. Raiola, P. Migliardi, G. Gyurky, et al., Eur. Phys. J. A13, 377 (2002).
- [6] F. Raiola, P. Migliardi, L. Gang, et al., Phys. Lett. **B547**, 193 (2002).
- [7] H. Yuki, T. Sato, J. Kasagi, et al., J. Phys.G: Nucl. Part. Phys. 23, 1459 (1989).
- [8] H. Yuki, J. Kasagi, A. G. Lipson, et al., JETP Lett. 68, 785 (1998).
- [9] М. А. Негодаев, А. В. Багуля, Препринт ФИАН № 11 (М., ФИАН, 1996).
- [11] H. S. Bosch and G. M. Halle, Nucl. Fusion. **32**, 611 (1994).
- [12] H. H. Anderson and J. F. Ziegler, Hydrogen Stopping Powers and Ranges in All Elements (Pergamon, New York, 1977.)
- [13] А. Г. Липсон, А. С. Русецкий, Б. Ф. Ляхов и др. Химия высоких энергий 42(4), 361 (2008).

Поступила в редакцию 5 июля 2012 г.