УДК 538.91, 538.971, 538.911

## ОСОБЕННОСТИ ДИФФУЗИОННЫХ ПРОЦЕССОВ ПРИ КАПЕЛЬНОЙ ЭПИТАКСИИ КВАНТОВЫХ КОЛЕЦ

Ю. Д. Сибирмовский, И. С. Васильевский, А. Н. Виниченко, И. С. Еремин, Н. И. Каргин, О. С. Коленцова, М. Н. Стриханов

> Экспериментально и теоретически исследован процесс капельной эпитаксии в системе материалов GaAs/AlGaAs. Выращены образцы эпитаксиальных структур с ансамблями одиночных и двойных квантовых колец при различных условиях роста. Теоретически рассмотрены процессы диффузии адатомов Ga и As, аналитически решены стационарные уравнения диффузии, выявлены механизмы формирования одиночных и двойных квантовых колец. Полученные результаты дают возможность моделирования профиля квантового кольца в зависимости от условий роста и, соответственно, управления профилем наноструктур при капельной эпитаксии.

**Ключевые слова**: капельная эпитаксия, квантовые кольца, GaAs, квантовые точки, молекулярно-лучевая эпитаксия, диффузия, наноструктуры.

Одним из направлений развития современной опто- и вычислительной электроники является переход к 0D наноструктурам, таким как квантовые точки и квантовые кольца. Приборы оптоэлектроники на квантовых точках и кольцах обладают рядом преимуществ, таких как температурная стабильность и широкий спектральный диапазон [1]. Квантовые кольца (КК) проявляют уникальные свойства в магнитном поле, например, незатухающие токи и эффект Ааронова–Бома [2], которые вызывают интерес как с фундаментальной, так и с прикладной точек зрения. Одной из важнейших задач при получении массивов квантовых точек или колец для приборных применений является управление их параметрами – поверхностной плотностью, размерами, формой, химическим составом – по возможности независимо и в широких пределах. Метод *капельной* 

Национальный исследовательский ядерный университет "МИФИ", 115409 Россия, Москва, Каширское шоссе, 31; e-mail: sibirmovsky@gmail.com.

эпитаксии (КЭ) [3] дает возможность подобного управления. КЭ предназначена для роста ансамблей полупроводниковых наноструктур различной формы, используя материалы  $A^{III}B^V$ , в том числе и решеточно-согласованные с подложкой [4, 5].



Рис. 1: Влияние температуры роста и давления As<sub>4</sub> на морфологию колец (изображения РЭМ).

Условия роста и параметры образцов. Методом молекулярно-лучевой эпитаксии (МЛЭ) на полуизолирующих подложках GaAs с ориентацией (001) были выращены образцы наногетероструктур с квантовыми кольцами GaAs/AlGaAs [6]. При 580 °C выращивался буферный слой Al<sub>0.3</sub>Ga<sub>0.7</sub>As толщиной ≈200 нм для создания потенциального барьера для носителей тока, после чего температура опускалась до 220–325 °C и проводился процесс капельной эпитаксии:

1) Осаждение около 5 МС (монослоев) Ga для формирования ансамбля наноразмерных капель при закрытом источнике As<sub>4</sub>;

2) Включение потока As<sub>4</sub> для кристаллизации капель Ga в квантовые кольца GaAs (при давлении As<sub>4</sub> –  $2 \cdot 10^{-6} - 1.3 \cdot 10^{-5}$  Topp).

Условия роста и результат отражены в табл. 1, а также на рис. 1. Образцы отличались температурой осаждения Ga, температурой роста (кристаллизации) и давлением As<sub>4</sub>.

Таблица 1

| N⁰ | $T_1$ , °C | $T_2$ , °C | $P_{As_4}, 10^{-5}$ | Тип КК  | Средний диаметр, нм |            | Высота,  | Концентра-       |
|----|------------|------------|---------------------|---------|---------------------|------------|----------|------------------|
|    |            |            | Topp                |         | Внешнее             | Внутреннее | HM       | ция, мкм $^{-2}$ |
| A1 | 220        | 220        | 1.3                 | Одиноч. | 51                  |            | $\sim 5$ | 141              |
| A2 | 280        | 280        | 0.55                | Двойные | 120                 | 42         | $\sim 5$ | 22               |
| B1 | 325        | 325        | 0.2                 | Одиноч. | 22                  |            | $\sim 5$ | 32               |
| B2 | 325        | 220        | 0.2                 | Двойные | 79                  | 31         | $\sim 5$ | 33               |
| B3 | 325        | 325        | 1                   | Двойные | 69                  | 27         | $\sim 5$ | 73               |

Условия роста и оценочные параметры полученных образцов КК GaAs (T<sub>1</sub> – температура подложки при осаждении Ga, T<sub>2</sub> – температура роста колец)

Как показали РЭМ и АСМ сканы (рис. 1), на поверхности образцов А1 и В1 сформировались ансамбли одиночных квантовых колец, а на поверхности образцов А2, В2 и В3 – двойных (концентрических) квантовых колец.



Рис. 2: (a) распределение концентрации As в капле Ga и (б) зависимость потока As от расстояния до центра капли для капель двух различных размеров. Пунктиром показана форма капель.

*Анализ результатов.* Рассмотрим одиночную каплю Ga в потоке As на поверхности атомно-гладкого монокристаллического слоя AlGaAs. Здесь, как и в [7, 8] и других работах, не рассматриваем диссоциацию As<sub>4</sub>, считая мышьяк атомным. При температурах выше 200 °C и давлениях As<sub>4</sub> менее 10<sup>-4</sup> Торр кристаллизация GaAs происходит только в контакте с подложкой.

В условиях избытка атомов Ga скорость роста всюду ограничена скоростью поступления (потоком) As. В этом случае, решая стационарное уравнение диффузии в сфери-



Рис. 3: (a) Схема потоков атомов Ga и As, участвующих в процессе роста колец, (б) распределение концентраций Ga и As и их произведения (скорости роста) вокруг капли.

ческих координатах с условием постоянной концентрации As на поверхности капли Ga, получаем распределение растворенного As в объеме капли, а также его поток на дне капли. Считаем каплю шаровым сегментом с радиусом основания a и высотой h. Тогда радиус кривизны равен  $r_0 = \frac{a^2 + h^2}{2h}$ , а расстояние от начала координат до основания  $l = r_0 - h$ . Так как кристаллизации в самой капле не происходит, уравнение диффузии принимает форму уравнения Лапласа:

$$\frac{\partial}{\partial r}\left(r^2\frac{\partial n_{As}}{\partial r}\right) + \frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial n_{As}}{\partial\theta}\right) = 0.$$

Условие постоянной концентрации As на поверхности капли:

$$n_{As}(r_0,\theta) = \begin{cases} n_0, & \cos\theta > \frac{l}{r_0}, \\ 0, & \cos\theta \le \frac{l}{r_0}. \end{cases}$$

С учетом граничных условий и требования конечности  $n_{As}$  при r = 0, получаем:

$$n_{As}(r,\theta) = \frac{n_0}{4} \left( 1 + \frac{l}{r_0} \right) \sum_{i=0}^{\infty} \left[ P_{i-1} \left( \frac{l}{r_0} \right) - P_{i+1} \left( \frac{l}{r_0} \right) \right] \frac{r^i}{r_0^i} P_i(\cos\theta)$$

где  $P_i$  – полиномы Лежандра. Для оценки локальной скорости роста GaAs нужно вычислить поток  $J_{As} \propto -\nabla n_{As}$  на дне капли  $r \cos \theta = l$  (рис. 2). Как можно видеть, вследствие кривизны поверхности капли, максимальный градиент концентрации, а значит и поток As, возникает на границе капли.

6

Механизм образования концентрических колец также основан на диффузионных процессах [7]. До открытия источника  $As_4$  на поверхности находится ансамбль кластеров Ga, а также адатомы Ga в области между каплями. После включения потока  $As_4$ свободные адатомы Ga реагируют с атомами As и встраиваются в решетку. Вокруг капли Ga возникает градиент плотности адатомов Ga, который приводит к их миграции от капли. Таким образом, поверхность разделяется на области в окрестностях капель, насыщенные Ga, и на области между каплями, насыщенные As. На границе этих областей и начинается рост внешнего кольца (рис. 3(a)) – локальное повышение скорости роста обеспечивается дополнительным потоком адсорбированных на подложке атомов As в сторону капли, тогда как в области между кольцами присутствует только равномерный поток от источника  $As_4$ . Для оценки радиуса и скорости роста внешнего кольца можно использовать уравнения поверхностной диффузии для атомов Ga и As. Скорость роста в первом приближении пропорциональна произведению концентраций Ga и As (рис. 3(6)).

$$\lambda_{Ga}^2 \Delta n_{Ga} - n_{Ga} = 0, \quad n_{Ga}(a) = n_a, \quad n_{Ga}(\infty) = 0,$$
$$\lambda_{As}^2 \Delta n_{As} - n_{As} + j_{As} = 0, \quad n_{As}(a) = 0, \quad n_{As}(\infty) = j_{As}\tau_{As},$$

где  $\lambda_{Ga}$ ,  $\lambda_{As}$  – длины диффузии,  $n_a$  – равновесная концентрация Ga,  $j_{As}$  – поток As от источника,  $\tau_{As}$  – время жизни атомов As на поверхности GaAs, ограниченное десорбцией.

Согласно разработанной модели, радиус внешнего кольца увеличивается с ростом температуры и падает с увеличением давления As<sub>4</sub>, что согласуется с экспериментом. Если этот радиус превышает половину расстояния между каплями (образец B1), либо настолько мал, что приближается к радиусу самой капли (образец A1), образуются одиночные кольца.

Заключение. В данной работе исследовано влияние условий роста методом капельной эпитаксии на морфологию наноструктур GaAs. Показано, что одну и ту же процедуру роста можно использовать для создания массивов кольцевых наноструктур различной формы и размера в зависимости от температуры роста и давления As<sub>4</sub>. Для объяснения результатов эксперимента предложена диффузионная модель капельной эпитаксии, которая уточняет и дополняет результаты предыдущих работ.

Работа выполнена при поддержке Минобрнауки РФ с использованием оборудования ЦКП "Гетероструктурная СВЧ-электроника и физика широкозонных полупроводников" НИЯУ МИФИ.

## ЛИТЕРАТУРА

- [1] Н. Н. Леденцов, В. М. Устинов, В. А. Щукин и др., ФТП **32**, 385 (1998).
- [2] F. Ding, N. Akopian, D. Li, et al., Phys. Rev. B 82, 075309 (2010).
- [3] N. Koguchi, S. Takahashi, and T. Chikyow, J. Cryst. Growth 111, 688 (1991).
- [4] T. Mano and N. Koguchi, J. Cryst. Growth **278**, 108 (2005).
- [5] T. Mano, T. Kuroda, S. Sanguinetti, et al., Nano Lett. 5, 425 (2005).
- [6] И. С. Васильевский, А. Н. Виниченко, И. С. Еремин и др., Вест. НИЯУ МИФИ
  2, 267 (2013).
- [7] X. L. Li, J. Cryst. Growth **377**, 59 (2013).
- [8] K. Reyes, P. Smereka, D. Nothern, et al., Phys. Rev. B 87, 165406 (2013).

Печатается по материалам III Международной молодежной научной школыконференции "Современные проблемы физики и технологий", Москва, МИФИ, апрель 2014 г.

Поступила в редакцию 4 июня 2014 г.