УДК 538.9

ЛАЗЕРНАЯ НАНОАБЛЯЦИЯ ГРАФИТА В АТМОСФЕРЕ АРГОНА

В. Д. Фролов^{1,2}, П. А. Пивоваров¹, И. М. Тупицин²,

Е.В. Заведеев^{1,2}, В.Г. Переверзев^{1,2}, В.И. Конов^{1,2}

Ключевые слова: лазерная наноабляция, газовая среда, графит.

Лазерная наноабляция – процесс, в ходе которого под действием низкоинтенсивного светового потока удаляются отдельные кластеры и даже атомы вещества, – представляет несомненный фундаментальный интерес, и с практической точки зрения имеет высокий потенциал для ультрапрецизионной обработки материалов, включая стравливание одиночных атомарных слоев. Впервые эффект наноабляции был обнаружен в алмазе и алмазоподобных пленках [1, 2] и объяснен графитизацией их поверхности с последующим окислением. Атмосферный кислород играет здесь ключевую роль, и реакция окисления непосредственно связана с процессом удаления вещества.

Недавно нами было экспериментально установлено, что режим наноабляции реализуется также в высокоориентированном пиролитическом графите (ВОПГ) при облу-

¹ Институт общей физики РАН, 119991 Россия, Москва, ул. Вавилова, 38; e-mail: frolov@ran.gpi.ru, p_pivovarov@hotmail.com.

² Национальный исследовательский ядерный университет "МИФИ", 115409, Москва, Каширское шоссе, 31.

чении мишени на воздухе лазерным пучком УФ и видимого диапазона с плотностью энергии за один импульс выше $E_0 \sim 0.4 \ \text{Дж/см}^2$ [3]. При превышении плотности лазерной энергии E порога $E_a \sim 1 \ \text{Дж/см}^2$ наступает испарительный режим лазерной абляции [3, 4].

Предположительно, характер наноабляции графита аналогичен проявляющемуся в алмазе, т.е. механизм наноабляции базируется на процессе окисления облучаемой поверхности образца. Для проверки данной гипотезы в настоящей работе нами были проведены сравнительные исследования процесса лазерно-индуцированного удаления графита на воздухе и в атмосфере инертного газа Ar.

Опыты проводились в сканирующем зондовом микроскопе (C3M) Ntegra Spectra M при комнатной температуре. Образцы помещались в рабочую камеру, в которую либо напускался воздух, либо накачивался аргон под нормальным атмосферным давлением, при этом для повышения эффективности закачки сопло подачи аргона подводилось в область объектива, фокусирующего лазерное излучение (на расстояние ~1 см). Процесс напуска газов контролировался датчиком влажности. При напуске в камеру аргона относительная влажность RH падала и становилась близкой к RH = 0%. После выдержки в течение ~10 минут в данных условиях начинались эксперименты по абляции. Соответственно, при напуске воздуха в камеру дожидались установления равновесной влажности в области образца (~35-40%). В эксперименте использовался твердотельный Nd:YAG лазер с длиной волны $\lambda = 532$ нм и длительностью импульса $\tau = 7$ нс. Лазерные импульсы следовали с частотой f = 1 к Γ ц, время экспонирования графитового образца составляло 60 с (количество лазерных импульсов $N = 6 \cdot 10^4$). Лазерный пучок фокусировался в пятно диаметром ~0.5 мкм на поверхность образца. Анализ морфологии кратеров нанометровой глубины осуществлялся с помощью сканирования области воздействия зондом СЗМ в режиме "tapping mode" до и сразу после окончания лазерного облучения.

В начале исследований было определено минимальное значение плотности энергии за один импульс, при которой уверенно фиксируются изменения рельефа поверхности материала в области лазерного воздействия (в основном, обнаружительная способность таких измерений определяется исходной шероховатостью поверхности образца). Это значение оказалось лежащим в интервале ~0.4–0.5 Дж/см², в этом случае на поверхности проявлялись кратеры диаметром ~0.5 мкм и глубиной ~1 нм. Усредненная по большому числу импульсов скорость абляции составляла в среднем

55 50 45 40 Глубина кратера, нм 35 1 30 Ar 25 воздух 20 15 10 5. 0 1.0 1.5 2.5 0.5 2.0 3.0 х, мкм

 $\sim 7\cdot 10^{-5} - 3\cdot 10^{-4}$ нм/импульс на воздухе и $\sim 3\cdot 10^{-5} - 10^{-4}$ нм/импульс в атмосфере Ar, что говорит о применимости в данном случае к процессу термина "наноабляция".

Рис. 1: Профили кратеров при $E \sim 0.5 \ Дж/cm^2$ на воздухе и в атмосфере Ar.

На рис. 1 представлены профили кратеров при плотности энергии лазерного излучения в импульсе $E \sim 0.6 \ \text{Дж/см}^2$. Видно, что кратеры, полученные в аргоновой среде, более мелкие (примерно в 2.5 раза), и область влияния лазерного излучения на поверхность образца уже, чем в случае воздушной среды.

Серия воздействий при различных энергиях лазерного излучения позволила установить зависимость глубины получаемых кратеров D от плотности энергии в импульсе E вплоть до величины $E = 3 \ \text{Дж/см}^2$. Данная зависимость D(E), построенная для наглядности в двойном логарифмическом масштабе, представлена на рис. 2. Следует отметить, что порог испарительной абляции, установленный по перегибу зависимости D(E), а также прямыми наблюдениями плазменного факела в зоне лазерного воздействия, составляет $E_a = 0.7 - 0.8 \ \text{Дж/см}^2$, и это значение находится в хорошем согласии с величиной порога испарительной абляции ($E_a \sim 1 \ \text{Дж/см}^2$), найденному в предыдущих работах [3, 4].

Поведение кривых D(E), приведенных на рис. 2, наглядно демонстрирует, что в режиме наноабляции ($E < E_a$) в аргоне происходит значительное (до 6 раз) снижение скорости абляции по сравнению с воздействиями на воздухе.

Рис. 2: Зависимость глубины кратеров в графите от плотности энергии в лазерном импульсе на воздухе и в атмосфере Ar.

Таким образом, полученные данные явно свидетельствуют в пользу реактивного механизма лазерной наноабляции графита на воздухе. По-видимому, скорость наноабляции в этом случае определяется, как и в алмазе, низкотемпературным окислением на поверхности графита как исходных (до лазерного облучения), так и индуцированных (в результате лазерного воздействия) дефектов.

При превышении E_a зависимости D(E) практически сливаются, что говорит о переходе к испарительному механизму удаления материала в обоих случаях. Обращает на себя внимание наблюдаемая в интервале $E = 2 - 3 \ \text{Дж/см}^2$ тенденция к более быстрому росту скорости абляции в аргоне, чем на воздухе (см. ход соответствующих кривых на рис. 2). Вероятно, этот эффект обусловлен более эффективным процессом ионизации воздуха, чем аргона (потенциалы ионизации азота, кислорода и аргона 14.5, 12.1 и 15.7 эВ соответственно [5]). При уровнях $E \sim 2 - 3 \ \text{Дж/см}^2$ интенсивность излучения становится близкой к пороговой для оптического пробоя газа I_B , которая составляет около $10^8 - 10^9 \ \text{Bt/cm}^2$ при инициировании плазмы вблизи испаряющейся мишени, в результате чего падающее лазерное излучение частично экранируется [6]. В аргоне плотность плазмы меньше, и большая доля лазерного импульса доходит до поверхности графита не рассеянной и не поглощенной, обеспечивая большую скорость абляции. Настоящая работа поддержана Российским научным фондом, проект № 14-22-00243.

ЛИТЕРАТУРА

- [1] V. I. Konov, Laser Photon. Rev. 6(6), 739 (2012).
- [2] M. S. Komlenok, V. V. Kononenko, V. G. Ralchenko, et al., Physics Procedia 12, 37 (2011).
- [3] V. D. Frolov, P. A. Pivovarov, E. V. Zavedeev, et al., Applied Physics A 114(1), 51 (2014).
- [4] R. Windholz, P. A. Molian, J. of Materials Science **3**(2), 4295 (1997).
- [5] G. Hanel, B. Gstir, T. Fiegele et al., J. Chem. Phys. **116**, 2456 (2002).
- [6] R. E. Russo, X. L. Mao, M. Caetano, M. A. Shannon, Applied Surface Science 96-98, 144 (1996).

Поступила в редакцию 27 октября 2014 г.