УДК 537.5

ЛИНЕЙНЫЕ ЗАКОНЫ И ПАРАМЕТРЫ ЭКТОННЫХ ПРОЦЕССОВ В ВАКУУМНОЙ ДУГЕ

Г.А. Месяц

Существует линейная зависимость от тока дуги таких параметров как ток ионов с катода; число ячеек в катодном пятне; диссипация энергии на катоде; сила, действующая на катод, а также масса ионов. На основе этих зависимостей предложена простая теория эктонных процессов в дуге с медным катодом. Установлена взаимозависимость параметров дуги исходя из факта её порционности. Определено количество электронов и ионов в эктоне. Используя эффект Танберга и формулу Ричардсона-Шоттки определены плотность тока дуги (~ $10^8 \ A/cm^2$) и электрическое поле (~ $10^7 \ B/cm$) в прикатодной зоне (~ $10^{-6} \ cm$).

Ключевые слова: ячейка катодного пятна, вакуумная дуга, эктон, эмиссия.

Процессы в катодном пятне (КП) вакуумной дуги носят порционный характер [1]. Порции плазмы из КП получили название эктонов [2]. Эти порции испускаются ячейками катодного пятна, существование которых открыл Кесаев [3]. Природа же этих ячеек была установлена Месяцем в 1966 году, когда им было открыто явление взрывной электронной эмиссии (ВЭЭ) [4]. В дуге эта эмиссия возникает после электрических микровзрывов струй жидкого металла из-за их джоулева разогрева при взаимодействии с плазмой. Ячейка является своего рода геном, который обусловливает все основные свойства вакуумной дуги, такие как эмиссия электронов и ионов, струй и капель металла, пороговый ток, время жизни дуги, катодное падение потенциала и т.д. Таким образом, эктон – это не абстрактное понятие [5], а реальный физический феномен. Мы оценим параметры процессов, которые происходят в дуге из-за наличия эктонов. Для упрощения оценок мы не будем вникать в структуру цикла ячейки, полагая только, что длительность цикла равна t_c .

ФИАН, 119991 Россия, Москва, Ленинский пр-т, 53; e-mail: mesyats@sci.lebedev.ru

Экспериментальные исследования и моделирование эктонных процессов показали, что концентрирование энергии за счёт джоулева разогрева в микрообъёме на поверхности катода приводит к взрывообразному разрушению [6, 7]. Вещество катода за короткие времена ($\leq 10^{-9}$ с) проходит последовательно стадии конденсированного состояния, неидеальной и идеальной плазмы. В основании плазменной струи вещество катода продолжает разогреваться и после перехода в плазменное состояние. Джоулева энергия, выделяемая на этой стадии, – это кинетическая энергия электронов, приобретаемая в электрическом поле. Часть этой энергии затрачивается на ионизацию атомов металла и разогрев ионов. Ионизационные процессы происходят в узкой области вблизи катода, и в дальнейшем, когда плазма пересекает промежуток катод – анод, ионизационный состав плазмы не меняется. Под действием градиента электронного давления ионы приобретают направленные скорости на уровне 10^6 см/с [6].

Эти процессы приводят к двум особенностям электрической дуги. Во-первых, ряд параметров ионов в плазме эктона не зависит от тока. Это относится к скорости ионов ν [4, 8] и к величине их среднего заряда z. Кроме того, скорости всех типов ионов – однозарядных и многозарядных – одинаковы [5]. От тока дуги не зависит также катодное падение потенциала U_0 [3]. Во-вторых, ряд параметров дуги, таких как ток ионов i_i , число ячеек на катоде n, диссипация энергии на катоде w, а также сила F, действующая на катод, и масса ионов растут линейно с током дуги. Назовём эти закономерности линейными законами. Эти две особенности позволяют оценить параметры эктонов в дуге. Упомянем бегло о самих линейных законах.

Кесаев [3] показал, что между током ячейки i_c и пороговым током дуги i_0 существует простая связь $i_c = 2i_0$. Поэтому среднее число ячеек, существующих одновременно в КП при токе дуги i, оказывается равным

$$n = i/2i_0. \tag{1}$$

Следовательно, число ячеек КП растёт линейно с током. Кимблин [9, 10] измерил ионные токи из КП, и установил, что для катода из графита и 14 исследуемых металлов (Cd, Ca, Zn, Pb, Mn, Mo, Ta, Ag, Cu, Sn, Fe, Cr, Ti, W) ток ионов

$$i_i = \kappa i. \tag{2}$$

Для всех перечисленных материалов катода $\kappa = 0.06 - 0.10$. Танберг [11] показал, что во время функционирования дуги на катод давит сила, прямо пропорциональная току

$$F = \theta i. \tag{3}$$

44

Для меди $\theta \approx 20$ Дин/A [11]. По данным Даалдера [12], во время функционирования вакуумной дуги на катоде происходит диссипация энергии w, величина которой при заданном времени горения дуги Δt прямо пропорциональна току:

$$w = U_d \Delta t i. \tag{4}$$

Это соотношение было проверено для девяти металлов (Pb, Cd, Zn, Ag, Ni, Cu, Mo, Sn, W). Для всех металлов $U_d/U_0 = 0.25 - 0.36$, где U_0 – катодное падение потенциала. Общая масса ионов, уносимая с катода, составляет

$$M = \gamma \Delta t i, \tag{5}$$

где γ – масса ионов, приходящаяся на один кулон электричества.

Объяснение этих закономерностей состоит в том, что нужно ток дуги принять равным $2i_0$, а время горения $\Delta t = t_c$. Тогда масса ионов M, уносимая за время цикла согласно (5), составит $M = 2i_0\gamma t_c$, а сила, которая давит на катод в течение цикла – $F = M\nu/2t_c$. Двойка в знаменателе в этой формуле взята из предположения об изотропности эмиссии всех типов ионов [13]. Приравняв эту силу к величине F, измеренной Танбергом (3), получим

$$\theta = \gamma \nu / 2. \tag{6}$$

Для определения γ учтём, что ток ионов i_i , с одной стороны, определяется из формулы (2), а с другой – из выражения

$$i_i = M z e / m t_c, \tag{7}$$

где *z* – средняя кратность заряда ионов, *m* – масса иона, *e* – заряд электрона. Из (7) с учётом (5) следует, что

$$\gamma = \kappa m/ez,\tag{8}$$

т.е. удельный унос массы ионов данного материала катода зависит только от среднего заряда иона z. При $\gamma = 39 \cdot 10^{-6}$ г/кул [12], $\nu = 1.3 \cdot 10^{6}$ см/с [5] величина $\theta \approx 25$ Дин/А, что близко с данными [7, 11,13]. Из формулы (4) оценим энергию, которая диссипируется на катоде одним эктоном

$$w_c = 2i_0 U_d t_c \approx 4 \cdot 10^{-7} \, \text{Дж.} \tag{9}$$

Из формулы (3) можно определить давление P на катод в зоне ячейки, разделив левую и правую части на площадь эмиссии

$$P = \theta j, \tag{10}$$

45

где j – плотность тока в ячейке. Для объяснения плотности тока в ячейке КП порядка 10^3 A/cm^2 и более принято [1], что возможен перегрев металла до 10^4 К и более, что имеет место в условиях взрыва металла. Например, в критической точке меди давление $P_k = 7.46 \cdot 10^3$ бар, а температура $T_k = 8.39 \cdot 10^3$ К [14]. Из формулы (9) с учётом (8) получим

$$j_k = 2P_k z e/\kappa m\nu. \tag{11}$$

Принимая z = 2.06 [5], $\kappa = 0.1$, $\nu = 1.3 \cdot 10^6$ см/с, получим $j_k \approx 3 \cdot 10^8$ А/см². Плотности тока в КП вакуумной дуги на уровне 10^8 А/см² сейчас считаются общепризнанными [1, 3, 5, 15, 16]. Очевидно, что в ячейке плотность тока должна быть выше, чем средняя в пятне, т.к. электронная эмиссия происходит в области наибольшей температуры в ячейке.

Для получения такой же плотности тока при температуре $T = T_k$ по формуле термоэлектронной эмиссии с учётом эффекта Шоттки необходимо, чтобы электрическое поле на катоде было не ниже $5 \cdot 10^7$ В/см. Таким образом, мы имеем новый способ оценки электрического поля и плотности тока эмиттирующей зоны ячейки катодного пятна. Если известно давление плазмы на жидкий металл, то можно найти скорость разлёта его струй и капель $\nu_i = \sqrt{\frac{2P}{\rho}}$. Для критической точки $\nu_l = 2.8 \cdot 10^4$ см/с, что не противоречит известным данным [1, 3, 5, 15, 16].

В заключение оценим количество электронов n_e , ионов n_i в плазме эктона. При определении учитывается, что часть электронов идёт на компенсацию объёмного заряда ионов, двигающихся в обратном направлении к аноду

$$n_e = 2i_0(1+\kappa)t_c/e,\tag{12}$$

$$n_i = 2i_0 \kappa t_c / ze. \tag{13}$$

При $\kappa = 0.1, t_c = 30 \cdot 10^{-9}$ с [7], $i_0 = 1.6 A, z = 2.06$, получим $n_e = 6.6 \cdot 10^{11}$, а $n_i = 2.9 \cdot 10^{10}$ штук. Общая масса ионов в эктоне составляет $3 \cdot 10^{-12}$ г. Энергия, передаваемая аноду ионами,

$$w_a = M\nu^2/2 = 5.1 \cdot 10^{-7}$$
Дж. (14)

Таким образом, эктонная (порционная) модель электрической дуги с учётом линейных законов и взрывной электронной эмиссии позволяет объяснить большой объём экспериментальных фактов, полученных при изучении дуги.

Работа выполнена при финансовой поддержке Российского научного фонда, проект № 14–22–00273.

ЛИТЕРАТУРА

- [1] G. A. Mesyats and D. I. Proskurovsky, *Pulsed electrical discharge in vacuum* (Berlin, Springer, 1989).
- [2] Г. А. Месяц, Письма в ЖЭТФ **60**, 514 (1994).
- [3] И. Г. Кесаев, Катодные процессы электрической дуги (М., Наука, 1968).
- [4] Г. А. Месяц, Взрывная электронная эмиссия (М., Физматлит, 2011).
- [5] A. Anders, *Cathodic arcs* (New York, Springer, 2008).
- [6] С. А. Баренгольц, Г. А. Месяц, Д. Л. Шмелёв, ЖЭТФ **120**, 1227 (2001).
- [7] G. A. Mesyats, IEEE Trans. Plasma Sci. 41, 676 (2013).
- [8] G. Y.Yushkov, A. Anders, E. M. Oks, et al., J. Appl. Phys. 88, 5618 (2000).
- [9] C. W. Kimblin, J. Appl. Phys. 44, 3074 (1973).
- [10] C. W. Kimblin, J. Appl. Phys. 45, 5235 (1974).
- [11] R. Tanberg, Phys. Rev. **35**, 1080 (1930).
- [12] J. E. Daalder, J. Phys. D: Appl. Phys. 8, 1647 (1975).
- [13] G. W. McClure, J. Appl. Phys. 45, 2078 (1974).
- [14] В. Е.Фортов, Уравнения состояния вещества (М., Физматлит, 2012).
- [15] J. E. Daalder, J. Phys. D: Appl. Phys. 10, 2225 (1977).
- [16] L. P. Harris, Vacuum Arcs (John Wiley and Sons, 1980).

Поступила в редакцию 3 декабря 2014 г.