УДК 538.913, 537.9

ДИЭЛЕКТРИЧЕСКИЙ СПЕКТР ВОДЫ КАК ОТКЛИК ДИНАМИКИ ПРОТОНОВ

В.Г. Артёмов

Проведен анализ широкополосных спектров обычной воды, тяжелой воды и льда в терминах динамической проводимости. Показано, что спектр ниже 10^{15} Гц удовлетворяет правилу сумм для силы осцилляторов и связан с динамикой протонной/дейтронной подсистемы в квазирешетке малоподвижных атомов кислорода. Дебаевская релаксация и OH полоса представляется результатом одного и того же механизма – движения протона в гармоническом потенциале, усредненного за различные времена наблюдения.

Ключевые слова: вода, лед, диэлектрический спектр, протонная проводимость, правило сумм.

Диэлектрические спектры воды и льда доступны для обобщения в беспрецедентно широком диапазоне частот $10^{-3} - 10^{22}$ Гц [1–3]. Природа инфракрасных (ИК) спектров воды, занимающих центральную часть частотного диапазона и включающих молекулярный резонансный отклик, многократно обсуждалась с точки зрения динамики цельных молекул H₂O с большим временем жизни (~11 ч), связанных водородной связью [4–6]. Подавляющее число попыток интерпретации ИК отклика базируется на переносе знаний о движениях молекул H₂O в газовой фазе на жидкость. Эти исследования продолжаются, в том числе с привлечением различных методов компьютерного моделирования [7, 8]. Общий вывод, однако, состоит в том, что на сегодняшний день не существует единого мнения в интерпретации ИК-спектра, а вопрос о динамической структуре воды и льда по-прежнему остается открытым [9].

В настоящей работе мы анализируем спектры воды, льда и тяжелой воды в диапазоне частот $10^8 - 10^{15}$ Гц с использованием частичного правила сумм для силы осцилляторов. В расчет принимается предложенная ранее модель воды [10], подразумевающая высокую (около 1%) концентрацию несвязанных зарядов, предположительно в форме

ИОФРАН, 119991 Россия, Москва, ул. Вавилова, 38; e-mail: vartemov@bk.ru.

ионных "дефектов" H₃O⁺ и OH. На феноменологическом уровне в настоящей работе миграция квазинезависимых протонов рассматривается на фоне малоподвижной подсистемы из тяжелых атомов кислорода в противовес общепринятой модели цельных молекул H₂O с водородными связями.

Рис. 1: Спектры динамической проводимости жидкой воды (сплошная линия) при 298 К и льда (пунктирная линия) при 266 К в диапазоне 10⁸ — 10¹⁶ Гц. Пересчет по данным из [3, 11–18]. Надоптический (по частоте) вклад сформирован электронной подсистемой, дооптический — протонной (см. текст).

Спектры динамической проводимости воды и льда, приведенные на рис. 1, получены пересчетом экспериментальных данных различных авторов [3, 11–18] с использованием соотношений Крамерса–Кронига и известных связей между диэлектрическими параметрами: $\varepsilon' = n^2 - \kappa^2$, $\varepsilon'' = 2n\kappa$, $\alpha = 2\kappa\omega/c$, $\sigma = \alpha c\varepsilon_0 n$, где ε' , ε'' и n, κ – действительная и мнимая части диэлектрической проницаемости и показателя преломления, соответственно, c – скорость света, $\sigma = \varepsilon_0 \varepsilon'' \omega$ – динамическая проводимость, α – поглощение. Особенностью спектров является наличие окна прозрачности в оптической области частот – минимума $\sigma(\omega)$. Надоптический (по частоте) вклад электронной подсистемы оказывается отделенным энергетической щелью порядка 5 эВ от дооптического спектра, ограниченного слева частотой дебаевской релаксации $1/\tau_D$, а справа частотой $1/\tau_c$, соответствующей фундаментальному краю поглощения.

Рис. 2: Спектры динамической проводимости в ИК диапазоне, рассчитанные по данным [24–26] (верхние панели) и соответствующие им частичные интегралы (2) в зависимости от частоты обрезания ω_0 (нижние панели) для: (a) воды и льда при различных температурах; (b) обычной воды (H₂O) и тяжелой воды (D₂O) при комнатной температуре. Пунктир – перенормированный спектр D₂ O (см. в тексте).

В нормальном масштабе дооптический спектр представлен в основном его ИК частью в виде нескольких хорошо разрешенных линий (рис. 2). Резонансные пики (см. рис. 1) находятся на "пьедестале", сформированном низкочастотными релаксациями дебаевского типа, наблюдаемыми ниже 1 ТГц, однако их интегральный вклад в спектр составляет менее 1%. Характерно, что положение и интенсивность осцилляторных ИК линий практически не меняется при переходе вода–лед, в то время как релаксационная часть спектра и dc проводимость претерпевают существенные изменения [19].

Анализ всех колебательных мод в веществе возможен с использованием правила сумм для силы осцилляторов (f sum rule) $\sum f_i = N$, где N – полное количество частиц в единице объема вещества [20]. Применительно к спектру проводимости правило сумм включает все диссипативные процессы на всех частотах от 0 до ∞ и имеет вид:

$$\int_{0}^{\infty} \sigma(\omega) d\omega = \frac{\pi}{2} \frac{Nq^2}{m^*} = \frac{\omega_p^2}{8},\tag{1}$$

где $\sigma(\omega) = \varepsilon''(\omega)\varepsilon_0\omega$ [Ом⁻¹м⁻¹] – динамическая проводимость, N [м⁻³] – полная концентрация носителей (электронов и атомов), с эффективными массой m^* [кг] и зарядом q [Кл]. Величина $\omega_p^2 = 4\pi N q^2/m$ – квадрат плазменной частоты. Уравнение (1) означает, что интеграл частотной зависимости динамической проводимости – величина постоянная, от температуры не зависит и пропорционален только концентрации зарядов в единице объема вещества, а величина $\sigma(\omega)$ всегда стремится к нулю при $\omega \to \infty$.

Благодаря упомянутой выше щели проводимости в оптическом диапазоне, в предположении аддитивности вкладов от электронной и атомной подсистем, правило (1) может быть применено в ограниченном интервале частот. Учитывая существенную разницу в массах атомов водорода m_p и кислорода m_O , эффективная масса $m^* = m_p m_O/(m_p + m_O)$ близка к массе протона $m^* \approx m_p$. Это означает, что тяжелые малоподвижные атомы кислорода могут не учитываться в спектре проводимости, и формула (1) для концентрации всех протонов в системе принимает вид:

$$N_p = \frac{2}{\pi} \frac{m_p}{q_p^2} \int_0^{\omega_0} \sigma(\omega) d\omega, \qquad (2)$$

где q_p – эффективный заряд протона.

На рис. 2 ИК-спектры динамической проводимости $\sigma(\omega)$ воды приведены наряду с частичными интегралами $S = \int \sigma d\omega$ в зависимости от верхней частоты интегрирования ω_0 . Благодаря трем основным линиям в исходном спектре, кривые интегралов имеют соответствующее число изломов и плато. Два нижних плато для воды совпадают, а для льда имеют значения в 1.6 раз ниже. Верхнее плато как для воды, так и для льда (см. рис. 2(a)), не зависит от температуры и из (2) дает значение N_p , близкое к полному числу протонов в единице объема $N_p^{\text{total}} = 2 \cdot \rho_{\text{H}_2\text{O}} N_A / M_{\text{H}_2\text{O}} \approx 6 \cdot 10^{27} \text{ м}^{-3}$, где $\rho_{\text{H}_2\text{O}}$ и $M_{\text{H}_2\text{O}}$ – плотность и молекулярная масса воды, соответственно. Двукратное несовпадение N_p и N_p^{total} связано с эффективным зарядом протона q_p , который для соблюдения равенства должен быть равен 0.71, что приблизительно совпадает с величиной 0.73, найденной из *ab initio* расчетов [21]. Таким образом, частичное правило сумм (2) выполняется для воды и льда.

На рис. 2(b) спектры динамической проводимости $\sigma(\omega)$ и интегралы S сравниваются для обычной H₂O и тяжелой D₂O воды. Спектр $S(\omega)$ для D₂O смещен по частоте в $k_1 = \omega_{\text{H}_2\text{O}}/\omega_{\text{D}_2\text{O}} = 1.36$ и интенсивнее в $k_2 = m_d/m_p = 2$ раза по сравнению со спектром H₂O. Учет скейлинговых констант k_1 и k_2 по обеим осям переводит спектр D₂O в спектр H₂O (см. рис. 2(b), пунктирная линия). Таким образом, ИК-спектры обычной и тяжелой воды связаны с динамикой протонов/дейтронов и масштабируются с поправкой на массу. Таким образом, частичное правило сумм (2) в дооптическом диапазоне частот ($\omega_0 < 180 \text{ T}\Gamma$ ц) выполняется также и для тяжелой воды. Результаты применения правила (2) к спектрам воды, льда и тяжелой воды сведены в табл. 1.

Таблица 1

	H_2O			D_2O
<i>Т</i> , К	266	298	345	298
$m_p, m_d, imes 10^{-27} \; { m kf}$	1.67			3.34
$\omega_0, \mathrm{T} \Gamma$ ц	180			
$q^*, \times 10^{-19}$ Кл	1.1			
$S, \times 10^{16} (\text{Om} \cdot \text{m} \cdot \text{c})^{-1}$	7.82	8.01	7.68	4.05
$N_{p/d}, \times 10^{-27} \text{ m}^{-3}$	3.25	3.33	3.19	3.36

Параметры уравнения (2) для воды, льда и тяжелой воды

Для феноменологического описания спектров рассмотрим ансамбль из протонов в квазирешетке неподвижных атомов кислорода. В контексте данного рассмотрения вода и лёд представляют собой типичный суперионный проводник, уравнение движения протонов в котором в одночастичном случае имеет вид (см., напр., [22, 23]):

$$m\ddot{x} + m\gamma\dot{x} + m\omega_0^2 \int_0^t \dot{x}(t')M(t-t')dt' = -qE_0\exp(-i\omega t),$$
(3)

где ω_0 – характеристическая частота колебательной моды, $\gamma = 1/\tau$ – константа затухания, M – функция памяти, E_0 – амплитуда внешнего поля.

В нашей модели, опираясь на данные работы [10], мы полагаем, что протоны имеют две базовые степени свободы (рис. 3): 1) осцилляции в гармоническом потенциале с периодом $r_{O-O} \sim 2$ Å (колебания вдоль линии, соединяющей два атома кислорода); 2) вязкая релаксация протонов в составе ионов H_3O^+ и OH^- , окруженных гидратной оболочкой, в кулоновском потенциале друг друга с периодом $r_{i-i} \sim 15$ Å [10] (релаксация в поле центральной силы). Третья степень свободы, связанная со случайными блужданиями поверх потенциала, и приводящая к низкочастотной dc проводимости здесь не рассматривается, как не дающая существенного вклада в интегральный спектр проводимости.

В описанных процессах протон участвует с различной эффективной массой m^* . В первом случае протон "голый" с $m_1^* = m_p$, во втором выступает в виде иона (H₃O⁺ или OH⁻) и трех молекул H₂O из первой гидратной оболочки с $m_2^* \approx 4 \cdot 18 \cdot m_p$. В зависимости от частоты зондирования, время нахождения в квазисвободном состоянии

Рис. 3: Схематическое изображение способов миграции протона в воде: 1 – осцилляции; 2 – релаксация в потенциале окружения. Сплошная линия – гармонический потенциал, созданный ближайшим окружением, пунктирная парабола – эффективный потенциал, созданный ионной атмосферой. Плюсом и минусом обозначены ионы H_3O^+ и OH^- , соответственно. Пунктирная окружность – гидратная оболочка иона. Черные сплошные круги – протоны.

 $\tau_0 = r \cdot m^{*1/2}/(kT)^{1/2}$, где r – пространственный период потенциала $(r_{i-i}$ или $r_{O-O})$, m^* – эффективная масса протона $(m_1^*$ или $m_2^*)$, имеет два характерных значения $\tau_C \sim 10^{-14}$ с и $\tau_D \sim 10^{-11}$ с. Первое совпадает с частотой ОН полосы в ИК-спектре, второе с частотой дебаевской релаксации (см. рис. 1). В случае, если частота зондирующего поля больше $1/(2\pi\tau_0)$, протоны будут вести себя как гармонический осциллятор и решением уравнения (3) для $\sigma = N_p q_p \dot{x}/E_0$ будет:

$$\sigma(\omega) = \frac{N_p q^2}{m^*} \frac{1}{\gamma - i\omega + \omega_0^2 \bar{M}(\omega)},\tag{4}$$

где $M(\omega)$ – фурье-образ функции $M(\omega)$; в противном случае, отклик будет релаксационным:

$$\sigma(\omega) = \frac{N_p q^2}{m^*} \frac{1}{\gamma - i\omega}.$$
(5)

Таким образом, из анализа широкополосного спектра проводимости воды можно сделать следующие выводы. Дооптический спектр проводимости обычной воды, тяжелой воды и льда удовлетворяет правилу сумм для силы осцилляторов: полная концентрация протонов, определяющих спектр проводимости, стремится к полному числу протонов в единице объема вещества N_p . Эффективный заряд протонов, дающих вклад в проводимость, равен $q_p^* = 0.71$ е. Дебаевская релаксация и ИК осцилляции, на феноменологическом уровне, являются следствием одного и того же процесса – движения протона в комплексном потенциале, усредненном за различные времена наблюдения.

Автор выражает глубокую благодарность А. А. Волкову за плодотворные дискуссии в предметной области статьи.

ЛИТЕРАТУРА

- [1] A. von Hippel, Transactions on Electrical Insulation 23(5), 801 (1988).
- [2] J. D. Jackson, *Classical Electrodynamics* (2nd edition) (New York, John Wiley & Sons, Inc., 1975).
- [3] W. J. Ellison, J. Phys. Chem. Ref. Data, **36**, 1 (2007).
- [4] J.-B. Brubach, A. Mermet, A. Filabozzi, et al., J. Chem. Phys. **122**, 184509 (2005).
- [5] S. Gopalakrishnan, D. Liu, H. C. Allen, et al., Chem. Rev. 106, 1155 (2006).
- [6] J. Schiffer and D. F. Hornig, J. Chem. Phys. 49, 4150 (1968).
- [7] J. Martí, J. A. Padro, E. Guàrdia, J. Chem. Phys. 105, 639 (1996).
- [8] S. Imoto, S. S. Xantheas, S. Saito, J. Chem. Phys. **138**, 054506 (2013).
- [9] D. Kennedy and C. Norman, Science **309**, 75 (2005).
- [10] A. A. Volkov, V. G. Artemov, A. V. Pronin, Eur. Phys. Lett. 106, 46004 (2014).
- [11] G. P. Johari, A. Hallbrucker, and E. Mayer, J. Chem. Phys. 94, 1212 (1990).
- [12] J. K. Vij, D. R. J. Simpson and O. E. Panarina, J. Mol. Liq. **112**, 125 (2004).
- [13] H. Yada, M. Nagain, K. Tanaka, Chem. Phys. Lett. 464, 166 (2008).
- [14] M. R. Querry, D. M. Wieliczka, D. J. Segelstein, *Refractive index of Water (H₂O)*. In: *Handbook of optical constants of solids*. Ed. by E. D. Palik (New York, Academic Press, 1991).
- [15] S. G. Warren, Appl. Opt. 23, 1026 (1984).
- [16] S. G. Warren and R. E. Brandt, J. Geoph. Res. 113, D14220 (2008).
- [17] U. Møller, D. G. Cooke, K. Tanaka, and P. U. Jepsen, J. Opt. Soc. Am. B 26(9), 9 (2009).
- [18] D. J. Segelstein, "The complex refractive index of water" PhD. thesis, University of Missouri-Kansas City (1981).
- [19] V. G. Artemov, A. A. Volkov, Ferroelectrics 466, 158 (2014).
- [20] Л. Д. Ландау, Е. М. Лифшиц, Статистическая физика. Часть 1. Издание 5-е (М., Физматлит, 2002).

- [21] S. H. Lee, J. C. Rasaiah, J. Chem. Phys. **139**, 124507 (2013).
- [22] P. Bruesch, S. Strassler, H. R. Zeller, Phys. Stat. Sol. (a) **31**, 217 (1976).
- [23] R. Kubo, M. Toda, N. Hashitsume, Statistical physics II. Nonequilibrium statistical mechanics (Heidelberg, Springer, 1985).
- [24] Y. Marechal, J. Chem. Phys. **95**, 5565 (1991).
- [25] Y. Marechal, J. Mol. Struc. **1004**, 146 (2011).
- [26] J.-J. Max and C. Chapados, J. Chem. Phys. 131, 184505 (2009).

Поступила в редакцию 6 апреля 2015 г.