УДК 533.9.12:538.94

О ВОЛНОВОМ ВЗАИМОДЕЙСТВИИ ЭЛЕКТРОНОВ В КРИОГЕННОЙ ПЛАЗМЕ С ВЫРОЖДЕННЫМИ ЭЛЕКТРОНАМИ

Д. Н. Габышев, А. А. Рухадзе

Исправлена идеологическая неточность, допущенная в работе [1] при вычислении потенциала взаимодействия двух электронов в криогенной плазме с вырожденными электронами. Полученная исправленная формула лишь количественно отличается от формулы (2.4), полученной в [1]. Качественный вывод, что обменное волновое взаимодействие электронов оказывается притягательным, сохраняется, меняется зависимость потенциала взаимодействия от расстояния между электронами.

Ключевые слова: ионно-звуковая волна, волновое взаимодействие.

В работе [1] был вычислен потенциал обменного волнового взаимодействия электронов в криогенной плазме с вырожденными электронами. Волновое взаимодействие было обусловлено обменом ионно-звуковой волной, которая существует при выполнении условий существования такой волны

$$\varepsilon_F = \frac{m\nu_F^2}{2} = \frac{(3\pi^2)^{2/3}\hbar^2 n_e^{2/3}}{2m} \gg T_e \ge T_i,$$
$$\nu_F = \sqrt{\frac{\varepsilon_F}{m}} \gg \frac{\omega}{k} \gg \nu_{Ti} = \sqrt{\frac{T_i}{M}},$$
(1)

здесь m и T_e – масса электрона и температура (энергия) электронной компоненты плазмы, соответственно, M и T_i – масса иона и температура ионной компоненты, а ε_F и ν_F – энергия Ферми электронов и их скорость в вырожденной электронной плазме, n_e – концентрация электронов, ω/k – фазовая скорость волны, ν_{Ti} – скорость ионов плазмы.

Потенциальная энергия взаимодействия двух электронов в среде с диэлектрической проницаемостью $\varepsilon_{ij}(\omega.\vec{k})$ определяется выражением [2]

$$U(\vec{r}) = \frac{4\pi e^2}{(2\pi)^3} \int \frac{e^{i\vec{k}\vec{r}}}{k^2 \varepsilon(\vec{k}\vec{\nu},\vec{k})} d^3\vec{k},\tag{2}$$

ИОФ РАН, 119991 Россия, Москва, ул. Вавилова, 38; e-mail: rukh@fpl.gpi.ru.

где \vec{r} – расстояние между электронами, а $\vec{\nu}$ – скорость их относительного движения. В дальнейшем один электрон будет считаться покоящимся, а второй движущимся со скоростью $\vec{\nu}$ относительно него. Величина $\varepsilon(\omega, \vec{k}) = \frac{k_i k_j}{k^2} \varepsilon_{ik}(\omega, \vec{k})$ – эффективная продольная диэлектрическая проницаемость.

В работе [1] было использовано выражение для $\varepsilon(\omega, k)$, соответствующее начальной задаче развития в плазме ионно-звуковых колебаний, т.е. с учетом мнимой части диэлектрической проницаемости [2]:

$$\varepsilon(\omega.k) = 1 + \frac{1}{k^2 r_D^2} \left(1 + i \frac{\pi}{2} \frac{\omega}{k\nu_F} \right) - \frac{\omega_{Li}^2}{\omega^2} \left(1 - \frac{8\nu_{ii}k^2\nu_{Ti}^2}{5\omega^3} \right),$$

где $\nu_{ii} = \frac{4\sqrt{\pi}e^4n_iL}{3\sqrt{M}T_i^{3/2}}$ – частота ион-ионных столкновений, L – кулоновский логарифм.

Здесь ленгмюровская частота ионов равна $\omega_{Li} = \sqrt{4\pi e^2 n_i/M}$, а дебаевский радиус для электронов с ленгмюровской частотой $\omega_{Le} = \sqrt{4\pi e^2 n_e/m}$ равен $r_D = \nu_F/\omega_{Le}\sqrt{3}$. При рассмотрении же стационарной задачи следует пользоваться выражением для $\varepsilon(\omega, k)$ без мнимой части [3]:

$$\varepsilon(\omega,k) = 1 + \frac{1}{k^2 r_D^2} - \frac{\omega_{Li}^2}{\omega^2}.$$
(3)

При вычислении (2) с учетом (3) несобственный интеграл вычисляется в смысле главного значения, как это делается при исследовании ионно-звуковой турбулентности [4].

Подставляя (3) в формулу (2), получаем

$$U(r) = \frac{e^2}{\pi} \int_{0}^{+\infty} \frac{k^2}{k^2 + 1/r_D^2} \left[\int_{-1}^{+1} e^{ikrx} \left(1 + \frac{x_0^2}{x^2 - x_0^2} \right) dx \right] dk,$$
(4)

здесь $x_0^2 = \frac{a^2}{1+k^2r_D^2} = \frac{a^2r^2/r_D^2}{r^2k^2+r^2/r_D^2}, a^2 = \frac{m}{3M}$. Поскольку в плазме $a \ll 1$, то $x_0 \ll 1$. После несложных вычислений из (4) получаем

iomibic bir morenini no (1) norry raem

$$U(r) = U_1(r) + U_2(r)$$

$$U_1(r) = \frac{e^2}{r} e^{-r/r_D}, \ U_2(r) = \frac{e^2}{\pi} \int_0^{+\infty} \frac{k^2}{k^2 + \frac{1}{r_D^2}} \left[\int_0^1 \frac{2e^{ikrx}x_0^2}{x^2 - x_0^2} dx \right] dk.$$
(5)

Используя подстановку u = kr,

$$U_2(r) = \frac{e^2}{\pi r} \int_0^{+\infty} \frac{u^2}{u^2 + \frac{r^2}{r_D^2}} \left[\int_0^1 \frac{2e^{iux}x_0^2}{x^2 - x_0^2} dx \right] du =$$

37

$$= \frac{e^2}{\pi r} \int_{0}^{+\infty} \frac{u^2}{u^2 + \frac{r^2}{r_D^2}} x_0 \left[\int_{0}^{1} \cos ux \left(\frac{1}{x - x_0} - \frac{1}{x + x_0} \right) dx \right] du, \tag{6}$$

вместе с тем $x_0 = x_0(k)$. Можно переписать часть $U_2(r)$ потенциала U(r) в виде

$$U_2(r) = \frac{e^2 a}{\pi r_D} \int_0^{+\infty} u^2 \left(u^2 + \frac{r^2}{r_D^2} \right)^{-3/2} J(u) du,$$
(7)

$$J(u) = \int_{0}^{1} \frac{\cos ux}{x - x_{0}} dx - \int_{0}^{1} \frac{\cos ux}{x + x_{0}} dx = -\int_{0}^{1} \frac{\cos ux}{x + x_{0}} dx + \int_{0}^{x_{0} - \varepsilon} \frac{\cos ux}{x - x_{0}} dx + \int_{x_{0} + \varepsilon}^{1} \frac{\cos ux}{x - x_{0}} dx,$$

здесь $\varepsilon > 0$ – уже бесконечно малое положительное число. Аккуратные вычисления интегралов в смысле главного значения дают

$$J_{1}(u) = -\int_{0}^{1} \frac{\cos ux}{x + x_{0}} dx = -\left(\cos ux_{0} \int_{ux_{0}}^{(1+x_{0})u} \frac{\cos z}{z} dz + \sin ux_{0} \int_{ux_{0}}^{(1+x_{0})u} \frac{\sin z}{z} dz\right),$$

$$J_{2}(u) = \int_{0}^{x_{0}-\varepsilon} \frac{\cos ux}{x - x_{0}} dx = \cos ux_{0} \int_{-ux_{0}}^{-\varepsilon u} \frac{\cos z}{z} dz - \sin ux_{0} \int_{-ux_{0}}^{-\varepsilon u} \frac{\sin z}{z} dz,$$

$$J_{3}(u) = \int_{x_{0}+\varepsilon}^{1} \frac{\cos ux}{x - x_{0}} dx = \cos ux_{0} \int_{\varepsilon u}^{(1-x_{0})u} \frac{\cos z}{z} dz - \sin ux_{0} \int_{\varepsilon u}^{(1-x_{0})u} \frac{\sin z}{z} dz.$$

Воспользовавшись свойствами четности и нечетности подынтегральных выражений в $J_1(u), J_2(u)$ и $J_3(u)$, получаем функцию

$$J(u) = J_1 + J_2 + J_3 = -\left[\cos ux_0 \int_{(1-x_0)u}^{(1+x_0)u} \frac{\cos z}{z} dz + \right]$$

$$+ \sin ux_0 \left(\int_{(1-x_0)u}^{(1+x_0)u} \frac{\sin z}{z} dz - 2 \int_{(1-x_0)u}^{\varepsilon u} \frac{\sin z}{z} dz \right),$$
(8)

не содержащую особенностей при $\varepsilon \to 0$, поэтому в дальнейшем положим $\varepsilon = 0$. Интегралы, входящие в (8), задаются в классе специальных функций [5] и получили наименование интегральных синуса и косинуса. Поэтому (8) можно переписать в виде:

$$J(u) = \cos ux_0 \{ Ci[(1-x_0)u] - Ci[(1+x_0)u] \} - \sin ux_0 \{ Si[(1-x_0)u] + Si[(1+x_0)u] \}.$$
 (9)

Вводя безразмерное расстояние $\rho = r/r_D$, записываем потенциал в виде

$$U(\rho) = \frac{e^2}{r_D} \left[\frac{e^{-\rho}}{\rho} + \frac{a}{\pi} \int_0^{+\infty} u^2 (u^2 + \rho^2)^{-3/2} J(u) du \right],$$
(10)

где $x_0 = a\rho/\sqrt{u^2 + \rho^2}.$

Функция J(u) на бесконечности выходит на константу $J|_{u\to\infty} = -\pi \sin(a\rho)$, поэтому интеграл в (10), вообще говоря, расходится. Однако в действительности внешний интеграл в (5) достаточно брать не до $+\infty$, а до $k_{\max} = \omega_{Li}/\nu_s$, где $\nu_s = \sqrt{\varepsilon_F/M}$, $\omega_{Li} = \omega_{Le}\sqrt{m/M}, \omega_{Le} = \sqrt{\frac{4\pi e^2}{m}n_e}$, где n_e – концентрация электронов. Это следует из условия применимости формулы (1.4) статьи [1] для спектра ионного звука: $\omega_{Li} \geq k\nu_s$. Так, например, для водородной плазмы при энергии $\varepsilon_F = 1$ эВ и концентрации $n = 10^{22}$ см⁻³ величина $k_{\max} = \omega_{Li}/\nu_s$ достигает порядка 10^8 см⁻¹. Соответственно, следует ограничить верхний предел интегрирования в (7) и (10) значением

$$u_{\max} = k_{\max} \rho r_D = \rho(k_{\max} = \sqrt{\frac{4\pi e^2 n_e}{\varepsilon_F}}, r_D = \sqrt{\frac{\varepsilon_F}{4\pi e^2 n_e}}).$$
 Окончательно получаем

$$U(\rho) = \frac{e^2}{r_D} \left[\frac{e^{-\rho}}{\rho} + \frac{a}{\pi} \int_0^\rho u^2 (u^2 + \rho^2)^{-3/2} J(u) du \right].$$
 (11)

Рис. 1: Потенциал $U(\rho)$ как сумма $U_1(\rho)$ и $U_2(\rho)$.

Далее для удобства отображения результатов все потенциалы и функции в тексте, таблице 1 и на графиках будут рассчитываться в единицах e^2/r_D .

Таблица 1

ρ	$\Delta I_{\max}(\rho)$	$\mu,\%$	$u_{\rm max}$
1	$1.74 \cdot 10^{-3}$	$1.46\cdot 10^1$	1.61
2	$1.17\cdot 10^{-3}$	$1.28\cdot 10^1$	1.95
4	$4.00 \cdot 10^{-4}$	$9.85 \cdot 10^0$	2.28
8	$1.22\cdot 10^{-4}$	$2.19\cdot 10^0$	5.06
16	$3.23\cdot 10^{-5}$	$4.97 \cdot 10^{-1}$	11.14

Сопоставление $I_J(\rho, u)$ и $I_H(\rho, u)$ при различных ρ

Рассматривая J(u) при различных значениях a и ρ , можно убедиться, что сложные выражения (8) и (9) при $\rho > 1$ близки к достаточно элементарной почти периодической функции $H(u) = -\pi \sin(x_0 u)$. Подставив её в (11) и считая, что в подынтегральном выражении биномиальный множитель есть адиабатически медленная функция по u, a синусоида – быстрая, можно грубо оценить, что от $U_2(\rho)$ следует ожидать периода по ρ приблизительно в $\sqrt{2}$ раза больше, чем у предела $J|_{u\to\infty}$ функции (9), и спадания амплитуды по закону $\sim 1/\rho$. Кроме того, легко увидеть, что использование H(u)в (7) вместо J(u) равносильно использованию формулы (2.4) из [1] для $U_2(\rho)$ (хотя и с ограничением верхнего предела в интеграле величиной ρ , а не бесконечностью). Следовательно, имеет смысл сравнить формулу (11) для точной функции J(u) из (9) и для приближённой H(u), что означает сопоставление стационарного и нестационарного случаев. Будем различать случаи с помощью соответствующих нижних индексов J и H.

Рассмотрим целиком подынтегральное выражение в (11). Более всего функции J(u)и H(u) не совпадают друг с другом в нуле, однако, умножение их на биномиальный множитель во многом нивелирует эту разницу, так что выражения $I_J(\rho, u) = u^2(u^2 + \rho^2)^{-3/2}J(u)$ и $I_H(\rho, u) = u^2(u^2 + \rho^2)^{-3/2}H(u)$ не совпадают гораздо меньше. Это несовпадение проиллюстрировано в табл. 1 для водорода с $a = 1.347 \cdot 10^{-2}$. Из нее видно, что с увеличением расстояния ρ максимальная абсолютная погрешность $\Delta I_{\max}(\rho) = \max_u |I_J(\rho, u) - I_H(\rho, u)|$ подмены J(u) функцией H(u) уменьшается. Уменьшается и соответствующая относительная погрешность подмены $\mu = 100\% \cdot \Delta I_{\max}(\rho)/J(\rho, u_{\max})$, вычисляемая в точке u_{\max} максимума погрешности $\Delta I_{\max}(\rho)$.

Убедившись, что за дебаевским радиусом функция $I_J(\rho, u)$ достаточно приемлемо упрощается до $I_H(\rho, u)$, логично вычислить абсолютную погрешность $\Delta U_{JH} = U_J(\rho) - U_H(\rho)$ соответствующих им потенциалов $U_J(\rho)$ и $U_H(\rho)$. Ее график для $a = 1.347 \cdot 10^{-2}$ приведен на рис. 2 и имеет максимум, равный $4.15 \cdot 10^{-6}$, вблизи точки $\rho = 2.75$. Пе-

Рис. 2: Погрешность ΔU_{JH} при замене $I_J(\rho, u)$ функцией $I_H(\rho, u)$ в выражении (10).

Рис. 3: Слева – потенциал $U_J(\rho)$ для водородной плазмы $a = 1.347 \cdot 10^{-2}$. Справа – тот же график в логарифмическом масштабе по оси ρ .

риодический характер абсолютной погрешности свидетельствует о совпадении частот $I_J(\rho, u)$ и $I_H(\rho, u)$. Амплитуда колебаний плавно спадает до нуля, что говорит о том, что выражение для части $U_2(r)$ потенциала, ответственной за волновое взаимодействие электронов, на больших расстояниях ρ практически не отличается от выражения (2.4), полученного в [1]. Собственно потенциал $U_J(\rho)$ изображен на рис. 3.

Из рис. 3 видно, что вблизи нуля преобладает отталкивание электронов, но уже при $\rho = 7.045$ отталкивание сменяется притяжением, так что глобальный минимум потенциала, равный $-2.206 \cdot 10^{-3}$, наблюдается вблизи значения $\rho = 199.0$. Далее энергия

притяжения ослабевает, и около $\rho = 411.7$ притяжение сменяется отталкиванием. Далее знак потенциала продолжает чередоваться почти периодически примерно каждые $a\pi 2\sqrt{2} \approx 660$ дебаевских радиусов.

Рис. 4: Сопоставление графиков потенциала при $a = 1.347 \cdot 10^{-2}$: серая кривая – по формуле (11), сплошные черные участки – по формулам (2.5) и (2.6) из [1], пунктир – условное гладкое соединение сплошных участков.

Рассмотрим теперь вопрос о применимости потенциала (11) более подробно. Зная, что температура ионов равна $T_i = e^2 n^{1/3}$, из (1) численно получаем условие на концентрацию электронов $\varepsilon_F = 5.316 \cdot 10^{-54} \frac{n_e^{2/3}}{m} \gg T_i \ge 2.31 \cdot 10^{-19} n_e^{1/3}$, из которого следует, что концентрация должна быть $n_e \gg 8.17 \cdot 10^{103} \cdot m^3$ (в единицах CGSE). Для водородной плазмы $n_e \gg 6.16 \cdot 10^{22}$ см⁻³ (для сравнения, концентрация молекул комнатного воздуха примерно в 2300 раз меньше и составляет около $2.69 \cdot 10^{19}$ см⁻³). Для оценок достаточно принять трехкратное превышение левой части сильного неравенства над правой. Возьмём для определённости концентрацию водородной плазмы, равной $n_e = 1.85 \cdot 10^{23}$ см⁻³. Тогда, подставляя выражение для энергии Ферми в дебаевский радиус, находим, что дебаевский радиус $r_D = \sqrt{\frac{\sqrt{27}}{8m} \frac{\pi \hbar}{e}} n_e^{-1/6} \approx 1.84 \cdot 10^{-4} n_e^{-1/6}$ равен $r_D = 2.44 \cdot 10^{-8}$ см при $\varepsilon_F = 1.89 \cdot 10^{-11}$ эрг. Глобальный же минимум потенциала (11) при $\rho = 199.0$ равен тогда $2.206 \cdot 10^{-3} \cdot e^2/r_D \approx 2.09 \cdot 10^{-14}$ эрг = $1.30 \cdot 10^{-2}$ эв = 151 K.

Выводы. 1. Модель, рассмотренная в работе [1], качественно правильно описывает взаимодействие электронов в плазме с вырожденными электронами и холодными ионами, в которой может существовать ионный звук. Волновое взаимодействие электронов, обусловленное обменом ионно- звуковыми волнами, соответствует притяжению электронов, а на расстояниях больше дебаевского радиуса может превосходить экранированное кулоновское взаимодействие.

2. Точная модель, рассмотренная в настоящей работе, может быть реализована в случае водородной плазмы только при высоких давлениях, порядка 6 · 10³ атмосфер и при температурах ниже 150 К. Возможно ли в такой плазме образование связанной электронной пары и возникновения условия для сверхпроводимости – это представляет собой самостоятельную проблему и будет рассмотрено в отдельной статье.

Авторы благодарят В. П. Силина за важное замечание, касающееся необходимости использования диэлектрической проницаемости (3). Данная работа была выполнена при финансовой поддержке Российского научного фонда в рамках Проекта РНФ № 14-29-00295.

ЛИТЕРАТУРА

- B. К. Битюков, А. А. Рухадзе, Краткие сообщения по физике ФИАН 42(3), 3 (2015).
- [2] А. Ф. Александров, А. А. Рухадзе, Лекции по электродинамике плазмоподобных сред (М., Изд-во Московского университета. Физический факультет МГУ, 1999).
- В. Ю. Попов, В. П. Силин, Физика плазмы 40(4), 368 (2014). См. также статью
 В. П. Силина в сб. Об основополагающих работах А. А. Власова по физике плазмы и их обсуждение (М., "Мир журналов", 2014).
- [4] В. П. Силин, Прикладная физика № 6, 5 (2012).
- [5] Справочник по специальным функциям с формулами, графиками и таблицами. Под ред. М. Абрамовича и И. Стиган (М., Наука, 1979), стр. 59–76.

Поступила в редакцию 10 июля 2015 г.