УДК 621.383.8

ПРИМЕНЕНИЕ КРИСТАЛЛОВ LFS-3 В КАЧЕСТВЕ ЛЮМИНЕСЦЕНТНЫХ ЭКРАНОВ ПИКОСЕКУНДНЫХ ЭОП

Н.В. Агеева, А.И. Загуменный, Ю.Д. Заварцев, С.Р. Иванова,

Т. П. Кулеченкова, С. А. Кутовой, Г. П. Левина, В. А. Макушина,

Т.А. Скабалланович

Показано, что кристалл LFS-3, установленный в качестве люминесцентного экрана в пикосекундный ЭОП, обеспечивает самое короткое время послесвечения по сравнению со всеми другими, ранее испытанными нами в аналогичных условиях быстрозатухающими люминесцентными экранами типа $Y_3Al_5O_{12}$:Ce; Y_2SiO_5 :Ce и др. При облучении кристалла LFS-3 одиночными 8 пс импульсами электронов с энергией 12–15 кэВ время затухания люминесценции по уровню 10^{-2} от максимума не превышает 250 нс.

Ключевые слова: сцинтилляционные кристаллы, пикосекундные ЭОП и диссекторы.

Введение. Один из подходов при создании пикосекундных диссекторов для диагностики синхротронного излучения состоит в использовании пикосекундных стрик-камер, работающих в режиме накопления повторяющихся сигналов с частотой повторения до нескольких сотен мегагерц [1], так называемых синхросканов [2]. Главным фактором, ограничивающим частоту регистрации повторяющихся сигналов (с тем чтобы избежать наложения ложных изображений от предыдущих актов регистрации), выступает конечное время высвечивания катодолюминесцентных люминофоров, используемых в качестве экранов пикосекундных 'ЭОП.

Использование пикосекундных ЭОП с люминесцентными экранами на основе быстрых катодолюминесцентных порошков Y₃Al₅O₁₂:Ce (люминофор P46), Y₂SiO₅:Ce (люминофор P47) с коротким временем сцинтилляции вместо медленных ZnS:Ag (люминофор P20), Gd₂O₂S:Tb (люминофор P43) позволило создать пикосекундный регистратор изображений повторяющихся сигналов в режиме накопления [3]. Для дальнейшего

ИОФ РАН, 119991 Россия, Москва, ул. Вавилова, 38; e-mail: zagumen@lsk.gpi.ru.

улучшения временных характеристик пикосекундной стрик-камеры, работающей в режиме накопления повторяющихся сигналов, необходим поиск люминесцентных материалов с более коротким временем сцинтилляции, чем в кристалле Y₃Al₅O₁₂:Ce (аналог P46). Это является первым требованием к люминесцентному экрану в данной работе. Второе требование к люминесцентному веществу экрана – это минимальная толщина кристаллической пластины, необходимая для полного поглощения фотоэлектронного импульса с энергией 12–15 кэВ, что позволяет получать изображения с микронным пространственным разрешением. Третьим, очень важным условием, является эффективность преобразования электронного пучка в люминесцентное изображение, которая не должна быть сколько-нибудь заметно меньше, чем у традиционно используемых медленных люминофоров из Gd₂O₂S:Tb (аналог P43).

Выбор материала для люминесцентного экрана. Известны многочисленные публикации по поиску сцинтилляционных кристаллов для использования в медицинских томографах при диагностике раковых заболеваний на ранней стадии. Основными требованиями к данным кристаллам является высокая плотность (больше 6 г/см³) и короткое время сцинтилляции – менее 40 нс для последнего поколения томографов (TOF PET scanner). В частности, кристаллы $Gd_3Al_2Ga_3O_{12}$:Ce (GAGG:Ce), $Lu_3Al_5O_{12}$:Pr (LuAG:Pr), $Lu_3Al_5O_{12}$:Ce (LuAG:Ce), Lu_2SiO_5 :Ce (LSO:Ce) и LaBr₃:Ce имеют время жизни возбужденного состояния (decay time) для быстрой компоненты 133 ± 5 нс, 23 ± 2 нс, 69 ± 3 нс, 46 ± 2 нс, 18 ± 2 нс, соответственно [4].

Из указанных выше материалов кристалл Lu₂SiO₅:Се обладает только одной короткой компонентой сцинтилляции и все 100% спада люминесценции проходят в диапазоне 40–48 нс. С 1990 года кристаллу Lu₂SiO₅:Се посвящены сотни публикаций, в частности [5], и установлено, что время жизни возбужденного состояния ионов Ce³⁺ (decay time) зависит от технологии выращивания кристаллов и дополнительных примесей, содержащихся в расплаве [6, 7].

Улучшение сцинтилляционных и технологических параметров Lu₂SiO₅:Се происходило по пути замещения части ионов лютеция Lu³⁺ на ионы иттрия Y³⁺ (Lu_{2-x}Y_xSiO₅:Ce) или гадолиния Gd³⁺ (Lu_{2-x}Gd_xSiO₅:Ce) [8]. С 2006 года кристаллы LYSO:Ce (Lu_{1.8}Y_{0.2}SiO₅:Ce) выращиваются в промышленных масштабах для изготовления медицинских томографов. В научных публикациях и каталогах параметров кристаллов, выращиваемых в США, Франции и Китае для кристалла LYSO:Ce указывают время жизни возбужденного состояния ионов Ce³⁺ (decay time) в диапазоне 41–49 нс. Снижение времени сцинтилляции ионов Ce³⁺ (decay time) до 30–32 нс достигнуто в мультилегированных ионами Ce³⁺, Y³⁺, Ca²⁺ нестехиометричных кристаллах на основе формулы Lu_{2+y}Si_{1-y}O_{5+y}, имеющих отношение матричных ионов (Lu³⁺/Si⁴⁺) > 2.000 с сокращенным названием LFS-3 [9], в сравнении со стехиометрическими кристаллами Lu₂SiO₅:Ce [Lu³⁺/Si⁴⁺] = 2.000 и Lu_{2-x}Y_xSiO₅:Ce [{Lu³⁺+Y³⁺}/Si⁴⁺] = 2.000.

Состав кристалла LFS-3 был оптимизирован применительно к физике высоких энергий для использования в условиях высоких радиационных нагрузок в центре установки электронно-магнитной калориметрии Компактного Мюонного Соленоида (CMS) в ЦЕРНе, где главными параметрами являются максимальная радиационная стойкость, короткое время сцинтилляции $\tau < 36$ нс в сочетании с высокой плотностью $d = 7.38 \text{ г/см}^3$ [10].

Экспериментальные результаты и обсуждение. Выращивание монокристалла Ce_{0.0014}Lu_{1.977}Y_{0.037}Ca_{0.001}Si_{0.992}O_{5.007} (LFS-3) осуществлялось методом Чохральского на промышленной автоматизированной установке "Кристалл-2". Для экспериментов из этого кристалла были изготовлены образцы в виде полированных пластин сечением 12×26 мм и толщиной 350 микрон.

Рис. 1: Спектр люминесценции ионов Ce³⁺ в кристалле LFS-3 при возбуждении электронным пучком.

Спектр люминесценции LFS-3 не имеет отличий при возбуждении ионов Ce³⁺ источником ультрафиолетового света или потоком электронов (рис. 1). Спектр люминесценции ионов Ce³⁺ в кристалле LFS-3 характеризуется максимумом в синей области 420–430 нм.

Рис. 2: Кинетика люминесценции люминофора LFS-3. Задний фронт спада люминесценции описывается суммой двух экспонент $I(t) = A_1 \exp\left(-\frac{t}{\tau_{\text{scintillation}}}\right) + A_2 \exp\left(-\frac{t}{\tau_{\text{afterglow}}}\right) c$ временами $\tau_{\text{scintillation}} = 32$ нс и $\tau_{\text{afterglow}} = 78$ нс. На правом рисунке представлен ход затухания в логарифмическом масштабе.

Данные по исследованному кристаллу LFS-3 сведены в таблицу 1. Кинетика люминесценции (импульс свечения люминофора) и подгонка заднего фронта импульса люминесценции двухэкспоненциальной кривой показаны на рис. 2. Энергия распределена практически поровну между двумя процессами, ответственными за свечение с временами $\tau_{\rm scintillation}$ и $\tau_{\rm afterglow}$ (площади под соответствующими экспонентами равны). Сравнение люминесцентных характеристик кристалла LFS-3:Се с характеристиками кристаллов Y₃Al₅O₁₂:Се и Y₂SiO₅:Се, показывает, что общее время свечения люминесцентного экрана LFS-3 примерно на два порядка короче времени свечения люминесцентных экранов Y₃Al₅O₁₂:Се и Y₂SiO₅:Се.

Кристалл LFS-3, установленный в качестве люминесцентного экрана в пикосекундный ЭОП, имеет самое короткое время затухания свечения по сравнению с ранее испытанными в аналогичных условиях быстрозатухающими люминесцентными экранами на основе кристаллов Y₃Al₅O₁₂:Ce и Y₂SiO₅:Ce. Наличие быстрой и медленной экспонент в кинетике затухания означает, что наряду с быстрым процессом релаксации ионизирующего возбуждения ионов Ce (*сцинтилляция, спектральный диапазон излучения* 380–490 нм, $\lambda_{\text{max}} = 420$ нм, константа затухания свечения $\tau_1 \sim 30 - 35$ нс) имеет место медленный процесс – захват электронов некими ловушками, с их последующей релаксацией (фосфоресценция, высвечивание в спектральном диапазоне $\lambda > 500$ нм, константа времени затухания $\tau_2 > 80$ нс).

Т	a	б	Л	И	Ц	a	1
					- 1		

2.6			2	1		T.7	01	
Материал	Передний	Задний фронт.			ΗT.	Константы затухания		Общее время
	фронт. Время	Время затухания			ния	свечен	свечения	
	разгорания	свечения от		двухэкспоненциальном		80% энергии		
	катодолюми-	максимума до		приближении, нс		(от 10%		
	несценции до	заданного		I(t) =		до 90%		
	максимума, нс	уровня, нс				$A_1 \exp\left(-\frac{t}{\tau_{\text{scintillation}}}\right) +$		уровней), нс
				$+A_2 \exp\left(-\frac{1}{2}A_2 \exp\left(-\frac{1}{2}A_2 + \frac{1}{2}A_2 + \frac{1}{$	$\left(-\frac{t}{\tau_{\rm afterglow}}\right)$			
		0.5	1/e	$1/e^2$	10^{-2}	$\tau_{\rm scintillation}$	$\tau_{\rm afterglow}$	
LFS-3	14	33	47	96	261	32	78	116
$Y_3Al_5O_{12}$:Ce	35	65	_	_	440	—	_	30000
$Y_2SiO_5:Ce$	10	65	_	_	250	_	_	20000

Заключение и благодарности. Использование кристалла LFS-3 для пикосекундных ЭОП дало обнадеживающие результаты по времени послесвечения люминофора. Если при этом принять во внимание, что коэффициент энергетического преобразования кристалла LFS-3 лишь незначительно уступает традиционно используемым люминофорам типа P43 для пикосекундных ЭОП, то становится очевидной перспективность дальнейших исследований по применению кристалла LFS-3, в том числе путем использования мелкодисперсных (наноструктурированных) порошков из LFS-3.

Данная работа была выполнена при финансовой поддержке Российского научного фонда в рамках Проекта РНФ № 14-29-00295.

ЛИТЕРАТУРА

- [1] E. I. Zinin, O. I. Meshkov, JINST (J. of Instrumentation), 10, P10024 (2015).
- [2] M. Ya. Schelev, Yu. N. Serduychenko, G. O. Vaschenko, Femtosecond synchroscan streak camera. Proc. SPIE 2869, 154 (1996).
- [3] К. A. Vereshchagin, P. B. Gornostaev, S. R. Ivanova, et al., Краткие сообщения по физике ФИАН 41(12), 48 (2014).

- [4] J. Iwanowska, L. Swiderski, T. Szczesniak, et al., Nucl. Instr. Meth. A 712, 34 (2013).
- [5] I. A. Kamenskikh, A. I. Zagumennyi, Yu. D. Zavartsev, et al., Radiation Effects Defects in Solids 135, 391 (1995).
- [6] Yu. D. Zavartsev, S. A. Kutovoi, A. I. Zagumennyi, "Chochralski growth and characterization of large Ce³⁺:Lu₂SiO₅ single crystals co-doped with Mg²⁺, or Ca²⁺, or Tb³⁺ for scintilation applications". in: Proc. of the 14 international conference on crystal growth (ICCG14), Grenoble, France (IOCG, Germany-Switzerland-UK-USA, 2004), p. 564.
- [7] Yu. D. Zavartsev, S. A. Koutovoi, A. I. Zagumenny, J. Crystal Growth 275, Iss. 1-2, e2167 (2005).
- [8] G. B. Loutts, A. I. Zagumennyi, Yu. D. Zavartsev, et al., J. Crystal Growth 174, 331 (1997).
- [9] Yu. D. Zavartsev, S. A. Koutovoi, A. I. Zagumenny, "Growth and characterisation of large crystals for medical application" 4-th International Workshop on Crystal Growth and Technology (IWCGT-4), 2008. Beatenberg, Switzerland, Book of Lecture Notes (IOCG, Germany-Switzerland-UK-USA, 2008), p. 224-228.
- [10] Ю. Д. Заварцев, М. В. Завертаев, А. И. Загуменный и др., Краткие сообщения по физике ФИАН 40(2), 13 (2013).

Поступила в редакцию 4 августа 2015 г.