УДК 537.9

ИССЛЕДОВАНИЕ ПЕРЕХОДА "МЕТАЛЛ-ДИЭЛЕКТРИК", ИНДУЦИРОВАННОГО ФЛУКТУАЦИОННЫМ ПОТЕНЦИАЛОМ ПРИМЕСИ, С ПОМОЩЬЮ ЭФФЕКТА ШУБНИКОВА–ДЕ ГААЗА

Л. Н. Овешников^{1,2}, А. Б. Давыдов², В. А. Кульбачинский¹, Б. А. Аронзон^{1,2}

> Исследованы гетероструктуры с квантовой ямой GaAs/InGaAs/GaAs и пространственно отделенным от нее слоем магнитной примеси Mn, обладающие различным характером проводимости. При содержании Mn, не превышающем количества, соответствующего 0.5 монослоя MnAs, образующийся в плоскости квантовой ямы перколяционный кластер не является односвязным, и состоит из металлических капель, разделенных слабопроводящими промежутками. Несмотря на отсутствие односвязного канала проводимости, во всех исследованных системах наблюдаются осцилляции Шубникова – де Гааза, которые определяются свойствами носителей заряда в проводящих каплях, не зависящими от содержания Mn. Оценка размера капель соответствует теоретическим значениям.

Ключевые слова: гетероструктуры, магнитная примесь, эффект Шубникова–де Гааза.

В работе исследовались гетероструктуры с квантовой ямой GaAs/In_xGa_{1-x}As и пространственно отделенным от нее слоем, содержащим магнитную примесь Mn. Результаты исследований структурных особенностей, аномального эффекта Холла и некоторых других свойств подобных систем представлены в работах [1–7]. Ввиду сильной диффузии атомов марганца в выращиваемой структуре образуется слой (Ga, Mn)As [6] с

¹ Национальный исследовательский центр "Курчатовский институт", 123182 Россия, Москва, пл. Академика Курчатова, 1.

² ФИАН, 119991 Россия, Москва, Ленинский пр-т, 53; e-mail: oveshln@gmail.com, aronzon@mail.ru.

существенно неоднородным пространственным распределением атомов Mn. Поскольку Mn может занимать в матрице GaAs разные позиции, он может проявлять как акцепторные, так и донорные свойства [8]. В результате в структуре формируется крупномасштабный флуктуационный потенциал, действующий на носители заряда в канале. В зависимости от соотношения амплитуды флуктуационного потенциала и уровня Ферми, проводимость в канале может иметь как дрейфовый, так и прыжковый характер. При этом в канале формируются проводящие капли, между которыми и происходят прыжки носителей заряда.

Рис. 1: (a) Температурные зависимости сопротивления исследуемой серии образцов; (b) осцилляции ШдГ для исследуемых образцов, рядом с номером образца подписана температура измерений, для наглядности осцилляции смещены друг относительно друга.

В работе исследована серия из 4 образцов, отличающихся глубиной квантовой ямы (содержанием индия в канале – x) и содержанием марганца – $N_{\rm Mn}$, для удобства измеряемым в монослоях (MC). Структура образцов приведена в [2]. Параметры исследованных образцов, а также получившиеся результаты работы, представлены в табл. 1. В силу различных значений x и $N_{\rm Mn}$ исследуемые образцы обладают различным характером проводимости в канале, и их сопротивление варьируется более чем на порядок (рис. 1(а)). В соответствии с показанными на рис. 1(а) температурными зависимостями сопротивления среди исследованной серии можно выделить 2 образца (F3 и F4), обладающих дрейфовым характером проводимости (металлической проводимостью), и два образца (F1 и F2) с большой отрицательной температурной производной сопротивления в области низких температур, что можно интерпретировать как переход к прыжковому транспорту.

Рис. 2: (a) Веерные диаграммы Ландау и (b) графики Дингла для исследуемой серии образцов; (c) полученные значения μ_I (см. текст), в зависимости от проводимости образцов в единицах $G_0 = e^2/(2\pi^2\hbar)$, линия проведена для наглядности.

В области низких температур для исследованных образцов наблюдались осцилляции Шубникова–де Гааза (ШдГ), в том числе и для образцов F1 и F2, несмотря на их маленькую относительную амплитуду в последних. Наблюдаемые осцилляции ШдГ после вычитания монотонной части магнетосопротивления приведены на рис. 1(b). Стоит отметить, что в исследованном диапазоне магнитных полей образцы с дрейфовым характером проводимости (металлические) ожидаемо демонстрируют большее количество периодов осцилляций, что свидетельствует о большей плотности двумерного дырочного газа. Для наблюдаемых осцилляций строилась веерная диаграмма Ландау [9], представленная на рис. 2(a). По линейному наклону полученных зависимостей определялась частота осцилляций, которая была пересчитана в концентрацию двумерных дырок $p_{\rm SdH}$ с помощью стандартного соотношения Лифицица–Онзагера, то есть в предположении отсутствия в системе сильной спиновой поляризации [10].

Для определения квантовых подвижностей μ_q дырок в исследуемых образцах строились графики Дингла (рис. 2(b)), представляющие собой зависимость функции Дингла ξ_D от обратной величины магнитного поля $1/B_p$ [10]. Линейный наклон зависимости $\xi_D(1/B_p)$ оказывается пропорционален $1/\mu_q$. Важно отметить, что наклон полученных зависимостей для разных образцов оказывается почти одинаковым (рис. 2(b)), что свидетельствует о близких значениях μ_q для исследуемых образцов.

Поскольку осцилляции ШдГ наблюдаются и в образцах с прыжковой проводимостью, следует предположить, что они возникают в проводящих каплях, то есть в ямах флуктуационного потенциала. Поэтому осцилляции определяются подвижностью μ_D в этих каплях. Одним из условий наблюдения осцилляций ШдГ является требование $\mu_D B >> 1$, для простоты мы проведем оценку снизу, то есть для случая $\mu_D B = 1$. Таким образом, точка начала осцилляций на рис. 1(b) и дает величину подвижности в капле μ_D . Полученные значения приведены в табл. 1. Для данных образцов была получена интегральная холловская подвижность μ_{Hall} и холловская концентрация p_{Hall} дырок в канале, из нормальной компоненты холловского сопротивления, аналогично процедуре, описанной в [4]. Представляя рассматриваемые системы в виде двух последовательно соединенных сопротивлений, соответствующих сопротивлениям в капле и вне ее, можно оценить подвижность μ_I в областях между проводящими каплями с помощью простого соотношения:

$$\mu_I = \frac{\mu_{\text{Hall}} \mu_D}{\mu_D - \mu_{\text{Hall}}}.$$
(1)

Полученные значения μ_I в зависимости от проводимости образцов приведены на рис. 2(c). Также величина магнитного поля начала осцилляций была пересчитана в магнитную длину l_B .

Таблица 1

Параметры исследованных образцов: содержание марганца N_{Mn}; содержание индия х в канале; концентрации р и подвижности µ дырок (см. текст), магнитная длина l_B, соответствующая началу осцилляций ШдГ

Обра-	$N_{\rm Mn},$	x	$p_{\mathrm{Hall}},$	$p_{SdH},$	$\mu_{\text{Hall}},$	$\mu_D,$	$\mu_I,$	$\mu_q,$	$l_B,$
зец	MC		$\times 10^{12} \text{ cm}^{-2}$	$\times 10^{12} { m cm}^{-2}$	$\mathrm{M}^2/(\mathrm{B}{\cdot}\mathrm{c})$	$\mathrm{M}^2/(\mathrm{B}\cdot\mathrm{c})$	$\mathrm{M}^2/(\mathrm{B}{\cdot}\mathrm{c})$	$\mathrm{M}^2/(\mathrm{B}\cdot\mathrm{c})$	HM
F1	0.3	0.22	0.32	0.37	0.022	0.35	0.023	0.22	15.2
F2	0.3	0.29	0.63	0.60	0.062	0.29	0.078	0.28	13.7
F3	0.4	0.23	0.96	0.82	0.210	0.45	0.39	0.25	17.2
F4	0.5	0.21	0.72	0.72	0.190	0.40	0.36	0.24	16.2

Стоит отметить, что концентрации дырок, полученные из эффектов Холла и ШдГ, хорошо совпадают. При этом подвижность μ_D заметно превышает μ_{Hall} . Таким образом, во всех образцах присутствует два типа областей с различной подвижностью – капли и промежутки между ними. Кроме того, μ_D для разных образцов оказывается достаточно близкой, так же, как и полученные значения квантовых подвижностей μ_q . То есть вне зависимости от характера проводимости образца, транспортные свойства носителей заряда в каплях практически не меняются. Как видно из рис. 2(c), подвижность дырок μ_I в областях между каплями растет при увеличении содержания марганца (увеличении проводимости). Это связано с уменьшением расстояния между каплями и, как следствие, возможного перекрытия волновых функций дырок в каплях. При этом уменьшение расстояния между каплями может быть связано с ростом как их размера, так и количества капель. Важным моментом является отсутствие единой проводящей области в канале, что соответствовало бы $\mu_D \approx \mu_{\text{Hall}}$. Таким образом, при содержании марганца, не превышающем 0.5 монослоя (для $x \approx 0.2 - 0.3$), в проводящем канале присутствуют слабопроводящие области, даже в случае дрейфовой проводимости между металлическими каплями.

В заключение отметим, что поскольку осцилляции возникают в каплях, то магнитная длина l_B , соответствующая началу осцилляций, является некоторой минимальной оценкой размера капли. Как видно из табл. 1, полученные значения l_B лежат в диапазоне от 13 до 17 нм, что разумно согласуется с теоретической оценкой, представленной в [7]. То есть отсутствует выраженная резкая зависимость размера капель от содержания марганца.

Таким образом, в работе продемонстрировано, что в исследованной области легирования марганцем (от 0.3 до 0.5 MC) возникающий в канале гетероструктуры проводящий кластер не является односвязным, он представляет собой цепочку проводящих капель, разделенных областями с меньшей проводимостью. Наличие проводящих капель в канале подтверждается наблюдением осцилляций ШдГ во всех исследованных образцах, включая образцы, в которых интегральная проводимость носит прыжковый характер. При этом свойства носителей заряда в капле практически не зависят от содержания марганца, а размер таких капель, оцененный из эффекта ШдГ, разумно согласуется с теоретическими предсказаниями.

Авторы благодарят ресурсный центр "Электрофизика" НИЦ "Курчатовский институт" и ЦКП ФИАН. Работа поддержана российско-индийским грантом DST-MES 14.613.21.0019 (RFMEFI61314X0019).

ЛИТЕРАТУРА

[1] V. A. Kulbachinskii et al., Nanosci. Nanotechnol. Lett. 4, 634 (2012).

- [2] Л. Н. Овешников и др., Письма в ЖЭТФ **100**(9), 648 (2014).
- [3] L. N. Oveshnikov et al., Solid State Phenomena 233/234, 109 (2015).
- [4] L. N. Oveshnikov et al., Scientific Reports 5, 17158 (2015).
- [5] B. A. Aronzon et al., Journal of Applied Physics **107**, 023905 (2010).
- [6] B. A. Aronzon et al., J. Phys.: Condens. Matter 20, 145207 (2008).
- [7] V. Tripathi et al., Phys. Rev. B 84, 075305 (2011).
- [8] T. Jungwirth et al., Rev. Mod. Phys. 78, 809 (2006).
- Д. Шенберг, Магнитные осцилляции в металлах (М, Мир, 1986). D. Shoenberg, Magnetic oscillations in metals (Cambridge University Press, Cambridge, 1984).
- [10] E. Tiras et al., Superlattices and Microstructures **29**(2), 147 (2001).

Поступила в редакцию 1 декабря 2016 г.