УДК 621.373.826:541.11:66.085.1

ОСОБЕННОСТИ СТРУКТУРНО-ФАЗОВЫХ ПРЕВРАЩЕНИЙ ПРИ ЛАЗЕРНОЙ ОБРАБОТКЕ ГИДРОКСИДОВ АЛЮМИНИЯ

Е. Ю. Тарасова, С. И. Кузнецов, А. С. Панин, И. А. Бакулин

Представлены результаты исследований по лазерной обработке алкоксидных гидроксидов алюминия с микронным и нанометровым размером частиц. Показано, что процесс обработки псевдобемита и фазовый состав образующихся оксидов определяются упаковкой частиц, распространением лазерного излучения в порошке и удельным энерговкладом. Основными фазами, формирующимися при лазерном нагреве, являются γ , α -Al₂O₃; количество δ , θ -Al₂O₃ мало. Минимальный размер кристаллитов корунда равен примерно 50 нм.

Ключевые слова: лазерная обработка, гидроксид алюминия, оксид алюминия, наночастицы.

Введение. В последние годы для синтеза функциональных порошковых материалов, в частности оксидов алюминия, начали широко применять нетрадиционные в этой области, но известные из других областей физики и химии способы получения и обработки материалов [1, 2]. Одним из таких методов является обработка порошков лазерным излучением [3].

Особый интерес лазерная обработка порошковых материалов представляет в связи с задачей получения наночастиц. Например, для получения наночастиц α-Al₂O₃ из гидроксидов алюминия необходимы высокие температуры и скорости нагрева, чтобы создать условия для структурно-фазовых превращений и вместе с тем избежать роста частиц за счет спекания.

В настоящей работе представлены экспериментальные результаты лазерной термообработки гидроксидов алюминия AlOOH (псевдобемит) с микронным и нанометровым размером частиц; проанализирована специфика процессов взаимодействия излучения

Самарский филиал ФИАН, 443011 Россия, Самара, ул. Ново-Садовая, 221; e-mail: kat@fian.smr.ru.

с обрабатываемым дисперсным материалом, стадийность образования оксидных фаз и связь структурно-фазовых превращений со структурой исходных материалов.

Методика эксперимента. В работе использовались гидроксиды алюминия с микронным (далее AlOOH_{микро}) и нанометровым (далее AlOOH_{нано}) размером частиц, полученные по оригинальной алкоксотехнологии, разработанной в ЗАО "ВНИИОС НК". Текстурные характеристики гидроксидов алюминия представлены в табл. 1. Значения насыпной плотности приведены без уплотнения (числитель) и с уплотнением (знаменатель).

Таблица 1

0
4T

Текстурные характеристики гидроксидов алюминия. Пояснения в тексте

Согласно рентгенофазовому анализу (РФА) исследуемые материалы имеют все характерные особенности псевдомита (ПБ). По данным ИК-спектроскопии (ИКС) наиболее интенсивные линии поглощения AlOOH_{микро} и AlOOH_{нано} принадлежат псевдобемиту; явно присутствуют линии алкоксида алюминия и изопропилового спирта. Хорошо заметны также линии поглощения воды.

Слой порошка ПБ толщиной 0.7 мм обрабатывался лазерным пучком в режиме сканирования без перекрытия отдельных проходов (встык); скорость сканирования варьировалась от 0.25 до 2 м/мин. Источником излучения служил непрерывный CO₂-лазер (длина волны излучения 10.6 мкм, мощность излучения 40 Вт); интенсивность излучения на поверхности порошка – 200 Вт/см². Исследуемые материалы подвергались одно-, двух-, трех- и пятикратной обработке. Перед каждой последующей обработкой порошки перетирались.

Фазовый состав исследуемых материалов определялся методом РФА на установке ДРОН-3 с использованием Си K_{α} -излучения по стандартной методике. Съемку отдельных дифракционных пиков для определения размеров областей когерентного рассеяния (OKP) проводили по точкам с шагом 0.01°. Аппаратные искажения определяли съемкой линий эталонного образца (кварц). Размер ОКР оценивался по формуле Дебая–Шеррера.

ИК-спектроскопию проводили на ИК- Φ урье спектрометре SPECTRUM 100 (Perkin Elmer).

Результаты и обсуждение. Исследование фазовых превращений AlOOH_{микро} и AlOOH_{нано} в условиях равновесного нагрева показало, что кинетика структурнофазовых превращений при разложении ПБ различна. В диапазоне температур 600– 1050 °C (время выдержки 2 часа) фазовые превращения при разложении AlOOH_{микро} и AlOOH_{нано} протекают одинаково, а последовательность фаз Al₂O₃ соответствует схеме ПБ $\rightarrow \gamma \rightarrow \delta + \theta$. Различие проявляется при переходе $\delta + \theta \rightarrow \alpha$. Для AlOOH_{микро} граница перехода $\delta + \theta \rightarrow \alpha$ лежит между 1050 и 1100 °C, и переход в пределах этой границы практически полный. Для AlOOH_{нано} по мере увеличения температуры с 1050 до 1150 °C количество α -Al₂O₃ растет, а количество δ - и θ -Al₂O₃ снижается; полностью однофазный образец α -Al₂O₃ удается получить только при 1200 °C [4].

При лазерной обработке фазовые превращения в AlOOH_{микро} начинались при скоростях сканирования меньше 0.75 м/мин, и при скорости 0.5 м/мин обработанный материал состоял из γ -Al₂O₃ и исходного AlOOH. Уменьшение скорости обработки до 0.25 м/мин приводит к увеличению содержания γ -Al₂O₃ и образованию α -Al₂O₃; присутствует также заметное количество исходного гидроксида. При снижении скорости до 0.1 м/мин концентрация α -Al₂O₃ возрастает. На дифрактограммах хорошо идентифицируются линии γ -Al₂O₃ и слабые линии AlOOH.

Фазовые превращения в гидроксиде алюминия с нанометровым размером частиц начинаются при скорости 1 м/мин, причем обработанный материал содержит γ -, α -Al₂O₃ и исходный AlOOH. Не исключено наличие промежуточных θ - и δ -фаз. С уменьшением скорости обработки (0.75–0.5 м/мин) гидроксид полностью переходит в оксиды алюминия. В составе материала, вероятнее всего, присутствуют все низко- и высокотемпературные фазы: γ -, δ -, θ -, α -Al₂O₃. При скоростях сканирования 0.25–0.1 м/мин материал состоит из α -Al₂O₃ и небольшого количества γ -Al₂O₃ [5].

В качестве параметра, характеризующего процесс лазерной обработки порошковых материалов, обычно используют энерговклад:

$$E = P \cdot \tau = P \cdot \frac{D_f}{v},\tag{1}$$

где *P* – мощность лазерного излучения; au – время воздействия лазерного излучения на обрабатываемый материал; D_f – диаметр пятна, v – скорость сканирования.

С учетом выражения (1) можно сделать вывод, что структурно-фазовые переходы в AlOOH_{нано} происходят при меньшем энерговкладе, чем в AlOOH_{микро}. То есть, кинетика образования оксидных фаз из гидроксидов различного гранулометрического состава при лазерной обработке, на первый взгляд, отличается от равновесного нагрева как по последовательности фазовых переходов, так и по влиянию размеров частиц на состав конечного продукта.

Рассмотрим процесс лазерной обработки более подробно. Особенностью быстрого лазерного нагрева гидроксидов алюминия является интенсивное движение порошка в зоне воздействия ("кипение"). Очевидно, что "кипение" порошка вызвано активной десорбцией воды и разбрасыванием парами частиц порошка. Однако следует отметить три закономерности:

1. Интенсивность "кипения" снижается с уменьшением скорости сканирования и ниже некоторой пороговой скорости прекращается.

2. Для AlOOH_{микро} "кипение" интенсивнее и наблюдается в большем диапазоне скоростей.

3. Интенсивного "кипения" AlOOH_{нано} не наблюдается ниже определенного порога скоростей, даже если основной фазой в результате обработки остается ПБ.

Разницу в интенсивности десорбции при лазерной обработке можно объяснить различием в плотности упаковки частиц и характере пор. Низкая насыпная плотность AlOOH_{нано} говорит о том, что упаковка частиц в данном случае представляет собой цепочечную "древовидную" структуру с большим количеством незамкнутых пор, характерную для упаковки наночастиц [6]. Поскольку насыпная плотность AlOOH_{нано} примерно в 2.6 раза меньше насыпной плотности AlOOH_{микро}, количество выделяющейся воды при лазерном воздействии в первом случае существенно меньше. Выделяющаяся при нагреве вода легко удаляется через крупные поры, снижая интенсивность "кипения". За счет поглощения в меньшей массе материала температура нагрева обрабатываемого слоя выше, что приводит к частичному разложению AlOOH и образованию оксидов алюминия вплоть до α -фазы уже при высоких скоростях сканирования.

Отметим также, что AlOOH_{нано} является, по сути, аэрогелем. Поэтому не исключено, что его оптические свойства отличны от свойств AlOOH_{микро}. К тому же электронное строение частиц с размером менее 20 нм может отличаться от электронного строения крупных частиц, поэтому будут отличны и элементарные акты поглощения излучения.

Обработанные лазерным излучением AlOOH_{микро} и AlOOH_{нано} в зависимости от энерговклада можно разделить на отдельные области фазового состава (рис. 1). В

пределах каждой области фазовый состав одинаков, и дифрактограммы образцов либо точно совпадают по абсолютной интенсивности пиков, либо незначительно отличаются интенсивностью линий α-Al₂O₃. Из-за различной насыпной плотности порошков для сравнительной оценки логичнее использовать удельный энерговклад в 1 моль: $E_{yd} = ME_{\Sigma}/m$, где M – молярная масса AlOOH, m – масса AlOOH в зоне лазерного воздействия.

На рис. 1 $E_{\Sigma} = nE$ – суммарный энерговклад в зону лазерного воздействия; n – количество обработок; E_{yq} – удельный энерговклад в 1 моль; ПБ – AlOOH псевдобемит; α , γ , δ , θ – соответствующие фазы Al₂O₃; нижний индекс (сл) означает, что интенсивность линии слабая, незначительно превышает уровень фона. При расчете E_{yq} считалось, что излучение проникает на всю глубину обрабатываемого слоя, и вся энергия идет на нагрев. Насыпные плотности AlOOH_{микро} и AlOOH_{нано} полагались 0.8 и 0.3 г/см³ соответственно.

В области I присутствует только AlOOH, причем интенсивности дифракционных линий при разных режимах обработки отличаются не более чем на 20%. В области II основная фаза – AlOOH, на дифрактограммах хорошо заметны также линии γ -Al₂O₃. В области III появляются слабые линии α -Al₂O₃. В области IV линии α -Al₂O₃ сравнимы по интенсивности с линиями ПБ и, вероятно, появляются δ -Al₂O₃. Область V отличается

AlOOH _{микро}																		
E_{Σ} , Дж	5.7	6.5	7.6	9.1	11.4	13	15.2	17.1	18.2	19.4	22.8	27.4	30.4	34.2	45.6	68.4	91.2	136.8
$E_{\rm yg}$, Дж/моль	36	41	48	57	71	81	95	107	114	122	143	172	190	214	286	428	570	856
область	I										II		III		IV	V		
фаза		ПБ										γ _{сл}	ПБ, γ _{сл} , α _{сл}		ПБ, γ, α	Π Б , γ, δ _{сл} , θ _{сл} , α		
фаза	ПБ, ү			ПБ, γ, α _{сл}			ΠБ, γ, α				Π Б , γ, δ _{сл} , θ _{сл} , α			γ, δ _{сл} , θ _{сл} , α		γ _{сл} , δ _{сл} , θ _{сл} , α		γ _{сл} , α
область	IIa			IIIa			IV				,	V		VI		VII		VIII
$E_{\rm yg}$, Дж/моль	125	142	166	199	250	285	333	374	399	425	499	600	665	749	666	1498	1997	2996
<i>Е</i> _Σ , Дж	5.7	6.5	7.6	9.1	11.4	13	15.2	17.1	18.2	19.4	22.8	27.4	30.4	34.2	45.6	68.4	91.2	136.8
AlOOH _{uauo}																		

Рис. 1: Фазовый состав образцов в зависимости от режимов лазерной обработки.

от области IV соотношением фаз. В этой области хорошо заметны линии δ -Al₂O₃, а интенсивность линий α -Al₂O₃ в 2–3 раза больше аналогичных в области IV. В зоне VI основные фазы – δ - и α -Al₂O₃; возможно, присутствует также γ -Al₂O₃. В целом, для областей IV, V, VI с увеличением энерговклада происходит рост интенсивности линий α -Al₂O₃ и заметное снижение уровня фона со стороны малых углов.

Из рис. 1 видно, что различие в фазовом составе AlOOH_{нано} и AlOOH_{микро} при одинаковых параметрах лазерной обработки вызвано различием в удельных энерговкладах. При одинаковых удельных энерговкладах фазовый состав образцов из AlOOH_{пано} и AlOOH_{микро} совпадает, а их дифрактограммы схожи (области IV, V, VI). Отсюда следует, что при анализе лазерной (и лучевой вообще) обработки мелкодисперсных порошковых материалов корректнее использовать не энерговклад в зону лазерного воздействия, а удельный энерговклад, например, в 1 моль.

Минимальные и максимальные размеры OKP α -Al₂O₃, полученного из AlOOH_{микро} и AlOOH_{нано}, печным и лазерным синтезом одинаковы и равны 50 и 90 нм соответственною. Размеры OKP α -Al₂O₃, полученного лазерной обработкой, зависят от лазерного энерговклада при одной обработке и количества последовательных обработок.

В рассматриваемом случае, поскольку размер частиц $AlOOH_{haho}$ и OKP α - Al_2O_3 отличаются почти на порядок, определяющую роль в образовании α - Al_2O_3 должны играть не только диффузия, но и спекание частиц. При этом, исходя из результатов синтеза α - Al_2O_3 в электропечи, для получения необходимого размера зерна α - Al_2O_3 спеканием температуры лазерного нагрева должны превышать 1300 °C. Для гидроксидов с большим размером зерна (более 50 нм) основную роль в образовании α - Al_2O_3 играют диффузионные процессы. Можно предположить, что при увеличении температуры печного нагрева разница в скорости образования α - Al_2O_3 из $AlOOH_{микро}$ и $AlOOH_{нано}$ будет уменьшаться.

Отмеченное выше не исключает, однако, того, что в условиях быстрого лазерного нагрева температуры фазовых переходов и кинетика спекания могут существенно отличаться от равновесной диаграммы состояний.

Заключение. Проведенные исследования по лазерной обработке псевдобемита AlOOH·nH₂O с микронным и нанометровым размером частиц показали, что различие процессов обработки вызвано отличием упаковок нано- и микрочастиц в обрабатываемом слое, а также различным распространением и поглощением лазерного излучения в порошках с микронным и нанометровым размером частиц. Фазовый состав оксидов, полученных из псевдобемитов с микронным и нанометровым размером частиц, определяется удельным энерговкладом в обрабатываемый материал.

Основными фазами, формирующимися при лазерном нагреве, являются γ , α -Al₂O₃, количество δ , θ -Al₂O₃ мало. Минимальный размер OKP корунда не зависит от размера частиц исходного псевдобемита и равен примерно 50 нм. Определяющее значение при образовании α -Al₂O₃ из псевдобемита с нанометровым размером частиц имеет спекание частиц.

ЛИТЕРАТУРА

- [1] Н. А. Пахомов, Р. А. Буянов, Кинетика и катализ 46(5), 711 (2005).
- [2] М. И. Алымов, Порошковая металлургия нанокристаллических материалов (М., Наука, 2007).
- [3] И. В. Саблукова, Е. Ю. Тарасова, И. В. Шишковский и др., "Способ приготовления оксидных катализаторов". Патент РФ № 2188709 от 10.09.2002.
- [4] С. И. Кузнецов, Е. Ю. Тарасова, А. Л. Петров и др., тезисы докладов третьей Всероссийской конференции по наноматериалам НАНО-2009, Екатеринбург, Россия, 2009 (Уральское издательство, Екатеринбург, 2009), с. 383.
- [5] Е. Ю. Тарасова, С. И. Кузнецов, А. Л. Петров и др., сборник материалов IV Всероссийской конференции по наноматериалам НАНО 2011, Москва, Россия, 2011 (ИМЕТ РАН, Москва, 2011), с. 130. http://nano.imetdb.ru/materials_NANO_2011.pdf
- [6] Г. Ш. Болтачев, Н. Б. Волков, ЖТФ 81(7), 18 (2011).

Поступила в редакцию 7 июля 2017 г.