ОБ ОДНОЙ ЭКСПЕРИМЕНТАЛЬНОЙ ВОЗМОЖНОСТИ НАБЛЮДЕНИЯ 7-ЯДЕР

Г.А. Сокол, В.А. Трясучев*

Рассмотрена возможность экспериментального обнаружения и исследования новых объектов мезон-ядерной физики — η -ядер — в фотоядерных реакциях. Предложен оригинальный метод идентификации η -ядер, описана схема экспериментальной установки, дана оценка выхода реакции с учетом возможностей синхротрона ФИАН "ПАХРА" (г. Троицк) и ускорителя МАМИ II (г. Майни).

Низкоэнергетическое взаимодействие притяжения η -мезонов и нуклонов /1/ послужило основанием для теоретического исследования новых объектов мезон-ядерной физики — η -ядер /2/. Последовавшие после этого работы по изучению образования η -ядер в реакциях $\pi A \to p$ В /3/ инициировали эксперимент в Брукхейвене (США) по поиску аномалий в энергетическом спектре протонов реакций $A(\pi, p)$, отождествляемых с образованием η -ядер /4/. Определенного результата этот эксперимент не дал, поэтому интересно рассмотреть другие возможности образования и обнаружения η -ядер. Так, в случае реакции

$$\gamma + A \rightarrow p + {}_{\eta}B$$
 (1)

предположение об однонуклонном механизме (γ , р η) при расчетах ее сечения /5/ более обосновано, чем в аналогичных расчетах с π -мезонами, благодаря слабому взаимодействию с ядром гамма-квантов. Кроме того, факт образования η -ядер в реакции (1) может быть засвидетельствован не только по спектру протонов /6/, но и по продуктам распада самого η -ядра. По реалистическим оценкам в 13% случаев распад η -ядра сопровождается вылетом одного π -мезона и одного нуклона по схеме:

$$\eta + N \to S_{11}(1535) \to \pi + N.$$
 (2)

В остальных случаях происходит безмезонный или двухпионный распад η -ядер /7/. В зависимости от того, взаимодействует ли η -мезон с нейтроном или протоном ядра, возможны следующие каналы распада:

Томский политехнический институт, г. Томск.

$$\eta + n \rightarrow \pi^{0} + n \ (1/3)$$
 (3a)

$$\rightarrow \pi^- + p (2/3) \tag{36}$$

$$\eta + p + \pi^{+} + n (2/3)$$
 (3B)

$$\rightarrow \pi^0 + p (1/3) \tag{3r}$$

В скобках даны относительные вероятности распада по данному каналу. Из четырех возможных каналов распада канал (3в) (π^{+} , п) является наиболее удобным для регистрации. Количество событий по этому каналу составит 1/3 (Br = 1/2 · 2/3) всех случаев распада по схеме (2).

Количество (π^+ п)-пар, возникающих в результате образования и распада η -ядра, можно оценить по следующей формуле:

$$\Delta N(\pi^{+}n) = \sigma(\gamma p \eta + \gamma n \eta) \Delta N_{n} \Delta N_{n} Br(\pi^{+}n) \Delta \Omega_{\pi} \eta_{\pi} \eta \epsilon(r), \qquad (4)$$

где σ ($\gamma p \eta + \gamma n \eta$) — полное сечение реакций A(γ , p) $_{\eta}$ B + A(γ , n) $_{\eta}$ C (при количественной оценке будем принимать равными сечения рождения η -мезона на нейтроне и протоне ядра); $\Delta N_{_{\Pi}}$ — число ядер в мишени; $\Delta N_{_{\Upsilon}}$ — число гамма-квантов в интервале энергий 0,7 — 0,9 ГэВ; Br(π n) — доля распадов, приводящих к (π^{+} n)-паре; $\Delta \Omega_{_{\Upsilon}}$ — телесный угол регистрации π -мезона (в выражение (4) входит только один телесный угол $\Delta \Omega_{_{\Upsilon}}$, так как процесс распада η + p \rightarrow π + n является коррелированным по углу вылетающих частиц); $\eta_{_{\Upsilon}}$ — эффективность регистрации π -мезона; $\eta_{_{\Pi}}$ — эффективность регистрации нейтрона; ϵ — доля распадов по схеме (2).

Подставляя в выражение (4) численные значения входящих в него величин, получим следующую оценку числа событий, соответствующих случаю рождения η -ядер на ядре ¹⁶O:

$$\Delta N(\pi^+ n) = 2 \cdot 1 \cdot 10^{-30} \cdot 2 \cdot 10^{+23} \cdot 10^8 (1/3) \cdot 1, 5 \cdot 10^{-2} \cdot 1 \cdot 0, 2 \cdot 0, 13 \simeq 20 \text{ yac}^{-1}.$$

Сечение реакции 16 O $(\gamma, p)^{15}_{\eta}$ N, рассчитанное в работе /5/, представлено на рис. 1. При оценке выходов предполагалось, что сечения 16 O $(\gamma, p)^{15}_{\eta}$ N и 16 O $(\gamma, n)^{15}_{\eta}$ O равны. Выход может быть повышен за счет оптимизации условий эксперимента. Наша цель — показать, что выходы оказываются достаточными для осуществления эксперимента.

Отметим особенности предлагаемого метода идентификации η -ядер путем регистрации π^+ n-пары. 1) Существует корреляция по углу, поскольку π^+ и п разлетаются под углом $\cong 180^\circ$. 2) Существует корреляция по энергии вылетающих частиц π^+ и п. Освобождающаяся при распаде энергия равна 408 МэВ, что приводит к следующим значениям средних энергий частиц распада: $E_{n} = 53$ МэВ, $E_{\pi} + \simeq 355$ МэВ. Такая двойная корреляция по углу и энергии вылетающих частиц позволяет надеяться на уверенное выделение π^+ n-пары на фоне случайных совпадений. 24

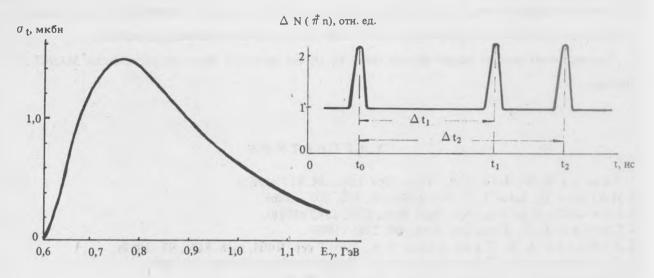


Рис. 1. Энергетическая зависимость полного сечения образования η -ядра η^{15} в реакции η^{16} о η^{15} гариа η^{15} гариа η^{16} гариа η^{15} гариа η^{16} гариа η^{16}

Комбинаторный фон можно уменьшить путем использования достаточно быстрых совпадений в π -телескопе и хорошей пассивной защиты детекторов. Фона, имитирующего π п-совпадения, т.е. имеющего такую же или близкую корреляцию по углу и энергии регистрируемых частиц, по-видимому, нет.

Если применить методику регистрации мезона и нейтрона по времени пролета, то регистрирующая аппаратура может быть достаточно простой: π^+ -мезоны регистрируются сцинтилляционным детектором, состоящим из нескольких слоев, чтобы уменьшить фон случайных совпадений. Назначение π^+ -детектора — дать временную отметку "старт". Нейтроны регистрируются слоистым сцинтилляционным детектором с суммарной толщиной 50-60 см для обеспечения эффективности регистрации $\eta_- \simeq 0,2$ и с поперечными размерами 50×50 см 2 для обесечения достаточно большого телесного угла регистрации. Энергия нейтронов определяется по времени пролета. Назначение детектора нейтронов — получить временную отметку -стоп. Ожидаемый вид времяпролетного спектра π^+ п-совпадений представлен на рис. 2. Калибровочная отметка t_0 соответствует регистрации обоими детекторами релятивистских частиц. Временные отметки t_1 и t_2 соответствуют ожидаемому положению пиков π^+ п-совпадений, возникающих в результате взаимодействия η -мезона с нуклоном η -ядра соответственно из s- и p-оболочек.

Эксперимент можно осуществить на синхротроне ФИАН "ПАХРА" как на тормозном γ -пучке, так и на пучке меченых фотонов. В случае меченых фотонов выход будет уменьшен примерно на

порядок из-за меньшей интенсивности тучка меченых гамма-квантов в требуемом интервале энергий (200 МэВ). Однако в случае меченых фотонов можно ожидать, что эксперимент будет практически бесфоновым, так как реализуется еще одно совпадение с падающим гамма-квантом. В этом случае статистика, набранная за 100 — 150 часов, уже может быть достаточной.

Эксперимент можно также осуществить на пучке меченых фотонов ускорителя МАМИ II (г. Майнц).

ЛИТЕРАТУРА

- 1. Bhaler R. S., Liu L. C. Phys. Rev. Lett., 54, 865 (1985).
- 2. Haider Q, Liu L. C. Phys. Lett. B, 172, 257 (1986).
- 3. Liu L. C., Haider Q. Phys. Rev., C34, 1845 (1986).
- 4. Chrien R. E. Phys. Rev. Lett., 60, 2595 (1988).
- 5. Лебедев А. И., Трясучев В. А. ВАНТ сер. ЯФИ, вып. 8(8), 97 (1989).
- 6. Лебедев А. И., Трясучев В. А. Препринт ФИАН № 45, М., 1990.
- 7. Chiang H. C., Oset E., Liu L. C. IFIC-90-29, 1990.

Поступила в редакцию 12 февраля 1991 г.