УДК 533.9.08:534.8

СОВЕРШЕНСТВОВАНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ПО ОПРЕДЕЛЕНИЮ ДОЗЫ ДЛЯ ДЕТЕКТОРА ТЕЛЕВИЗИОННОГО ТИПА ПРИ ПРОТОННОЙ ДОЗИМЕТРИИ

А.В. Гринкевич¹, В.В. Сиксин²

Проведены результаты по совершенствованию математической модели для вычислителя детектора телевизионного типа. Определены параметры аналитической формулы, справедливой для энергий протонов от 60 до 200 МэВ, в основе которой применена комбинация функций параболического цилиндра, согласуемая с численными методами и новыми экспериментальными данными.

Ключевые слова: область энерговыделения, водный фантом, адаптивная телевизионная камера, пик Брэгга, глубинное дозное распределение, аналитическая аппроксимация, функция параболического цилиндра.

Введение. При создании вычислителя для нового типа детектора – детектора телевизионного типа [1–3], разработана математическая модель с аналитическим представлением кривой Брэгга [4], которая основывалась на экспериментально полученных результатах при энергиях протонного пучка до 150 МэВ.

Усовершенствование конструкции детектора телевизионного типа позволило провести эксперименты в более широком диапазоне терапевтических энергий – до 200 МэВ.

На рис. 1 показан рабочий кадр детектора с результатом попиксельного измерения длины "области свечения" при энергии пучка протонов 190 МэВ, которая определяет величину z (точку остановки протона в водном фантоме, которую фиксирует детектор телевизионного типа по вспышке в конце пути протона).

В вычислитель детектора заложена математическая модель с аналитической аппроксимацией кривой Брэгга в простом и удобном виде, позволяющем проводить быстрые вычисления в on-line режиме работы.

 $^{^1}$ ООО "ЭВС", 1952
53 Россия, Санкт-Петербург, Салтыковская дорога, 18. 2 ФИАН, 11999
1 Россия, Москва, Ленинский пр., 53; e-mail: antktech@yandex.ru.

Рис. 1: Рабочий кадр измерения зафиксированной траектории пучка протонов с энергией 190 МэВ в водном фантоме.

В усовершенствованной математической модели сохранена в качестве основной комбинации функций параболического цилиндра и модель в замкнутом виде, описывающие кривые Брэгга. Новые полученные результаты согласуются с результатами, полученными численными методами в [5], а также с другими экспериментальными данными [6–8].

Получение аналитической зависимости дозы от глубины энерговыделения в водном фантоме. Выведенная ранее [4] аналитическая формула позволяет по величине z, измеренной детектором телевизионного типа, вычислить поглощенную дозу (в опорной точке z в светящемся пике Брэгга):

$$DOZA(z) = K_1 e^{-3.42936(R_0 - z)^2} [K_2 D_{-1.565}(-3.7037(R_0 - z)) +$$

$$+41.7037D_{-0.565}(-3.7037(R_0-z))], (1)$$

где K_1 и K_2 – константы; R_0 – параметр при заданной начальной энергии E_0 налетающего протона [8]; z – точка (текущая глубина) в водном фантоме, измеренная детектором; $D_{-1.565}$ и $D_{-0.565}$ – функции параболического цилиндра.

Основой здесь является функция параболического цилиндра $D_{-0.565}$ и $D_{-1.565}$, два члена которой (как разные амплитуды) позволяют правильно описать кривые Брэгга как DOZA(z).

Совершенствование математической модели заключалось в подборе новых коэффициентов в формуле (1) и параметра R_0 , при которых удалось получить удовлетворительное описание пиков Брэгга в новом интервале более высоких энергий от 150 до 200 МэВ.

В табл. 1 приведены результаты работ по определению коэффициентов K_1 , K_2 и параметра R_0 для новых 8-ми значений энергий.

Таблица 1

Энергия, МэВ	Параметр		
	K_1	K_2	R_0 , см
150	0.283591	0.316511	15.33
160	0.260587	0.299450	17.39
170	0.251691	0.284888	19.37
180	0.228110	0.273465	21.27
185	0.225843	0.267986	22.32
190	0.216086	0.262818	23.41
192.5	0.211351	0.260562	23.92
200	0.204572	0.254031	25.53

Константы и параметры аналитического выражения (1)

Графическое представление пиков Брэгга в расширенной части диапазона энергий показано на рис. 2.

Далее, используя результаты расчета по формуле (1), для 8-ми новых значений энергий вычислялась доза в максимуме пика Брэгга (в окрестности максимума пика Брэгга вычислялась средняя доза) – было получено 8 значений поглощенной дозы для интенсивности пучка налетающих протонов 1 · 10⁹ за импульс.

Аппроксимация дозы полиномом 4-й степени. С учетом новых значений энергий была проведена статистическая обработка нелинейным методом наименьших квадратов

Рис. 2: Кривые пиков Брэгга, определенные по формуле (1).

и определены параметры полинома 4-й степени. Получено новое уравнение:

$$DOZA(z) = 231.029 - 39.1574z + 2.72233z^2 - 0.0850858z^3 + 0.000995267z^4.$$
(2)

Рис. 3: Точки, определенные по формуле (1) и их аппроксимация формулой (2).

На рис. 3 приведены новые точки в расширенном диапазоне энергий, определенные из формулы (1), и аппроксимирующая кривая, определяемая формулой (2).

Расчетные значения дозы и глубины приведены в табл. 2.

Таблица 2

Энергия, МэВ	Глубина, см	Доза на "макушке", сГр
150	15.33	18.9440
160	17.25	17.0280
170	19.11	15.8220
180	21.00	14.8170
185	22.08	14.3670
190	23.08	13.7438
192.5	23.66	13.4279
200	25.26	12.7796

Значения дозы и глубины

Вновь полученная формула (2) справедлива для интенсивности пучка налетающих протонов $1 \cdot 10^9$ за импульс. Совокупность формул (2), выведенных для разных диапазонов практически применяемых энергий, позволяет осуществлять конечные расчеты непосредственно вычислителем детектора в расширенном диапазоне терапевтических энергий протонов.

Таким образом усовершенствована математическая модель с аналитической аппроксимацией кривой Брэгга в простом и удобном виде, позволяющем проводить быстрые вычисления в on-line режиме работы в широком диапазоне энергий протонов.

Авторы выражают благодарность В. Е. Балакину за практические консультации и предоставление возможности работы на протонном ускорителе; А. И. Львову – за консультации и поддержку работы; А. Е. Чернуха – за творческие обсуждения численных методов при проведении расчетов дозных полей.

ЛИТЕРАТУРА

- А. В. Гринкевич, В. В. Сиксин, Краткие сообщения по физике ФИАН 44(2), 3 (2017).
- [2] А. В. Гринкевич, В. В. Сиксин, Краткие сообщения по физике ФИАН 44(5), 8 (2017).
- [3] В. В. Сиксин, Краткие сообщения по физике ФИАН **45**(5), 36 (2018).

- [4] А. В. Гринкевич, В. В. Сиксин, Краткие сообщения по физике ФИАН 45(2), 47 (2018).
- [5] J. F. Briesmelster, MNCP-A general Monte Carlo N-particle transport code. Version 4C. Report LA-13709-M (Los Alamos National Laboratory, Los Alamos, 2000).
- [6] K.-U. Gardey, "A Pencil Beam Model for Proton Therapy-Treatment Planning and Experimental Results", Ph.D. thesis, Universitat Heidelberg, 1996.
- [7] U. Oelfke, K.-U. Gardey, E.W. Blackmore, and G. K. Y. Lam, "Proton dosimetry at TRIUMF: Experimental profiles and PTRAN MC calculations", in PTCOG XXII, San Francisco, 1995. http://www.ptcog.ch/index.php/ptcog-publications.
- [8] J. F. Janni, "Proton range-energy tables, 1 keV-10 GeV", At. Data Nucl. Data Tables 27, 147 (1982).

Поступила в редакцию 27 июля 2018 г.