Краткие сообщения по физике № 2 1980

СЛЕКТРОМЕТР РЕЛЯТИВИСТСКИХ ЭЛЕКТРОНОВ НИЗКИХ ЭНЕРГИЙ В СОСТАВЕ КОСМИЧЕСКИХ ЛУЧЕЙ И ЕГО ГРАДУИРОВКА НА ПУЧКЕ "ОДИНОЧНЫХ" ПОЗИТРОНОВ

Л. З. Джилавян, Н. П. Кучер, Г. В. Лупенко²⁾

УДК 523.165:621.384.64

Описаны устройство и градуировка на пучке "одиночных" позитронов спектрометра релятивистских электронов. Градуировка произведена при энергиях позитронов IO-60 МаВ. Приводятся предварительные результаты эксперимента на ИСЗ "Прогноз-4".

Исследование электронной компоненты в составе космических лучей имеет большое значение для решения ряда астрофизических задач /I,2/. Регистрация электронов в зависимости от их энергии осуществляется различными методами, которые наиболее подробно описаны в обзоре /2/. Основной трудностью для всех методов регистрации электронов является надежность идентификации электронов. В составе космических лучей потоки релятивистских протонов превосходят потоки релятивистских электронов более чем на два порядка, поэтому даже маловероятные процессы, связанные с ядерным взаимодействием, рассеянием и др., могут привести к тому, что релятивистский протон будет зарегистрирован прибором как электрон.

Наиболее распространенным методом регистрации электронов в диацазоне энергий от нескольких МэВ до сотни МэВ является так называемый метод dE/dx – Е, когда с помощью телескопа, состоящего из двух детекторов, регастрируются удельные ионизационные потери тонким детектором (dE/dx) и энерговыделение остановившихся частиц в толстом детекторе (E). Для исключения длиннопро-

* НИИЯФ Московского Государственного университета.

бежных частиц, в основном, релятивистских протонов, телескоп окружается защитным детектором, включенным на антисовпадения с детекторами телескопа. Таким образом осуществляется отделение электронов от прочих частиц в составе космических лучей и измеряется их энергия. Защитный детектор также позволяет снизить фон прибера, исключив ливневые частицы, идущие вне апертуры телескопа.

Р и с. I. Схема спектрометра

Для улучшения качества отбора электронов при разработке прибора для искусственных спутников Земли (ИСЗ) серии "Прогноз" наряду с традиционными de/dx, Е и защитными детекторами был использован черенковский детектор с твердым радиатором. На рис. I приведена схема этого спектрометра. Использованы следующие обозначения: Ia – радиатор черенковского детектора из плекситиласа (диаметр 40 мм, толщина ~I5 мм); Io – зеркало; 2 – детектор de/dx (s1(I1), диаметр 2I мм, толщина чувствительного слоя ~I мм); 3 – Е-детектор (ca1(T1), диаметр 40 мм, толщина 40 мм); 4a, 46 – защитный детектор из пластического сцинтиллятора (толщина ~ IO мм); ЭП – эмиттерный повторитель; ЭПУ – зарядовый предусилитель; ИД – интегральный дискриминатор; АСС – схема совпадений – антисовпадений. В радиаторе черенковского детектора входная поверхность покрыта черной матовой краской, а выходная поверхность полированная и ребристая (с высотой ребер 2 мм и углом 90°), что нозволяет сделать прибор направленным, т.е. регистрировать только частицы, входящие со стороны черенковского счетчика. Более подробно аналогичный черенковский детектор описан в работе /3/.

С помощью дифференциального дискриминатора (ДД) выделяются импульси, соответствующие энерговиделению от релятивистских частиц в детекторе dE/dx. Е-детектор и задитный детектор находятся в оптическом контакте и просматриваются одним ФЭУ-82. Сигнали, соответствующие Е-детектору, не сопровождаемие сигналами от задитного детектора, отделяются от прочих сигналов электронной схемой анализа формы сигнала (ФЦ) /4/.

- Спектрометр снабжен собственным амплитудным анализатором (см. рис. I), выходные сигналы которого поступают на телеметрию ИСЗ. На анализатор поступают сигналы от Е-детектора, а в качестве управляющего импульса используются сигналы от АСС (см. рис. I).

Настройка спектрометра и обработка результатов, получаемых с его помощью, требуют хорошего знания различных характеристик (эффективность регистрации η ; зависимость наиболее вероятной амплитуды A_0 сигнала от энергии падаищих частиц Е т.е. $A_0 = f(E)$; амплитудное распределение F(A,E) и т.д.) как отдельных детекторов, входящих в него, так и всего спектрометра. В полном объеме такую информацию трудно получить расчетным цутем. Более надежно определить все характеристики спектрометра позволяют градуировки на ускорителе.

Градуировка спектрометра была произведена на позитронном пучке системы получения позитронов и квазимонохроматических аннигиляционных фотонов на линейном ускорителе электронов (ЛУЗ) ИЯИ АН СССР /5,6/. Основное назначение этой системы – исследование электро- и фотоядерных реакций /7,8/. Однако оборудование этой системы обладает широкими возможностями для создания различных по характеристикам прецизионных пучков электронов, позитронов и х-квантов /9/. Проведение градуировки спектрометра потребовало создания низкофоновых пучков "одиночных" электронов или позитронов (под пучками "одиночных" частиц здесь имеются в виду пучки такой интенсивности, при которой можно пренебречь эффектами, связанными с одновременной регистрацией детекторами спектрометра двух и более частиц). Создание таких пучков на ускорителях, именных большую скважность, представляет собой определенную проблему. Так, в данном случае потребовалось ослабление интенсивности пучка ХУЭ по сравнению с номинальной в ~10¹³ раз. Методика получения пучка "одиночных" позитронов в настоящей работе была в основном аналогична использованной в работе /10/. Метод получения низкофонового пучка "одиночных" частиц, основанный на использовании вторичных пучков, обеспечивает большие стабильность интенсивности и оперативность настройки пучка, чем применявшийся ранее на ЛУЭ метод ослабления первичного пучка электронов /II/. Кроме того, при работе с позитронами часть ЛУЭ, ускорящая позитроны, выполняет еще роль активной защити от фона электронов.

В результате проведенных градуировочных работ были измерени величины η и зависимости 4 = f(E). и F(A,E) для различных детекторов спектрометра. Измерения амплитудных распределений производились на анализаторе АИ-I28 в режиме с управлением.

На рис. 2а приведены сглаженные кривые амплитудных распределений F(A,E), полученных при энергиях позитронов E = 10-60 МэВ для E-детектора. При этом в качестве управлящего сигнала использовались двойные совпадения сигналов черенковского детектора и детектора dE/dx. Для удобства изображения кривые на рис. 2а разнесены, статистика в максимумах кривых ~ 10^3 событий на канал анализатора. На рис. 26 показана зависимость $A_0 = f(E)$ для E-детектора. При энергиях до 30 МэВ с хоровей точностью сохраняется линейность зависимости $A_0 = f(E)$, которая нарушается при более высоких энергиях. Экстраполируя эту линейную зависимость к нулевой амплитуде, получаем величину энергия, теряемой частицами при прохождении через телескоп прибора до E-детектора. Отсюда можно определить минимальную энергию, регистрируемую спектрометром (~7 МаВ).

Амплитудное распределение F(A,E) для черенковского детектора показано на рис. 3. При этом в качестве управляющего сигнала использовались двойные совпадения детектора dE/dx и E-детектора.

Результаты градуировки спектрометра показывают, что спектрометр способен надежно внделять релятивистские электроны и определять их энергетический спектр вплоть до энергий ~ 60 МаВ.

Рис. 2. а) Амплитудные распределения импульсов Е-детектора при различных энергиях позитронов. б)Зависимость А, от энергии позитронов для Е-детектора

Рис. 3. Амплитудное распределение импульсов черенковского детектора. Стрелкой указано положение порога ИДІ при стандартном режиме

Сравнение данного слежтрометра с лучними приборами, используемыми для решения аналогичных задач (см., например, работи /I2,I3/), показывает сопоставимость их характеристик.

Спектрометр, описанный вние, был установлен на борту искусственных спутников Земли "Прогноз-4" и "Прогноз-5". Часть экспериментальных данных, полученных на ИСЗ "Прогноз-4", была обработана с использованием результатов градуировки. Показано, что в диапазоне энергий 7-40 МаВ дифференциальный энергетический спектр первичных электронов описывается следуищей зависимостью:

dI/dE = $257 \cdot E^{-I_*7\pm0_*3}$ (электрон $\cdot M^{-2} \cdot c^{-I} \cdot cp^{-I} \cdot M^{-1}$), rne E - энергия электронов в MaB.

Авторы выражают благодарность І. Е. Лазаревой и В. В. Петрекко за интерес к работе, В. Н. Пономареву за помощь в работе на ЛУЭ и В. П. Суханову за помощь в подготовке эксперимента.

Институт ядерных исследований Поступила в редакцию АН СССР. 27 сентября 1979 г.

20

Литература

I. В. Л. Гинзбург, С. И. Сироватский, Происхождение космических лучей, М., АН СССР, 1963 г.

2. R. R. Daniel, S. A. Stephens, Space Sci. Rev., 10,599(1970).

- 3. Л. Ф. Калинкин, Г. В. Дуненко, Г. И. Путачева и др., Геомаги. и аэрономия, 15, 345 (1975).
- 4. А. А. Гусев, Г. В. Лупенко, Г. И. Пугачева и др., ПТЭ, <u>4</u>, 86 (1976).
- 5. Л. З. Джилавян, Препринт ИЯИ АН СССР П 0099, М., 1978 г.
- 6. Л. З. Джилавян, Труды 6 Всесовзного совещания по ускорителям заряженных частиц, Дубна, ОИЯИ, 1979 г., т. 2, с. 182.
- 7. Л. З. Джилавян, Н. П. Кучер, ЯФ, <u>30</u>, 294 (1979)..
- .8. Л. З. Джилавян и др., Препринт ИЯИ АН СССР, П 0121, М., 1979 г.
- Э. Д. З. Динлавян, Н. П. Кучер, Вопросн атомной науки и техники, сер. Техника физического эксперимента, вып. I(3), с. 82, XФТИ, 1979 г.
- 10. Л. З. Джи чавян и др., Препринт ИНИ АН СССР II 0128, М., 1979 г.
- II. И. А. Гранаев и др., Учи, 16, 866 (1971).
- 12. J. L'Heureux et al., Astrophys. J., 171, 363 (1972).

13. G. M. Simnett, F. B. McDonald, Astrophys. J., 157, 1435(1969).