Краткие сообщения по физике № 6 1979

ОПРЕДЕЛЕНИЕ ВНУТРЕННИХ ПАРАМЕТРОВ АКТИВНОЙ ОБЛАСТИ ИНЖЕКЦИОННЫХ ЛАЗЕРОВ С ПОМОЩНО СОСТАВНОГО РЕЗОНАТОРА

П. Г. Елисеев, М. А. Манько, Г. Т. Микаелян

УДК 543.42:621:378.325

Изучена зависимость выходной мощности инжекпионного лазера с составным резонатором от длины последнего. Рассчитан эффективный коэффициент отражения такого резонатора и измерены диференциальный коэффициент усиления и коэффициент потерь инжекционных лазеров на основе двойных гетероструктур в системе арсенид галияя – арсенид галияя, алюминия. Обсуждена схема связи инжекционного лазера с одномодовым световодом, устранящая нестабильности вводимой в световод мощности.

Составние резонатори для инжекционных лазеров успешно применялись для управления параметрами излучения этих лазеров /1,2/. В настоящем сообщении метод составного резонатора используется для определения внутренних параметров активной области инжекционных лазеров: диференциального коэффициента усиления в и коэффициента потерь с. Традиционные методики определения этих параметров включали либо изменение коэффициента отражения торцов лазерного диода (нанесение отражающих или просветляющих покрытий), либо наличие серии однотипных лазеров с различными длинами резонаторов, что не дает возможности следить за эволюцией этих параметров для одного образца в процессе долговременных испытаний. Эти трудности удается обойти, используя метод составного резонатора.

Исследования проводились с инжекционными лазерами на основе двойных гетероструктур в системе Al_{0.3}Ga_{0.7}As - GaAs - Al_{0.3}Ga_{0.7}As (толщина активной области d Варьировалась от I,5 до 2,5 мкм), работающими в импульсном режиме (длительность импульса 500 нс, частота следования 2 кГц) при комнатной температуре. Длина волны генерации ~0,89 мкм. Составной резонатор был образован одним из 22 торцов дазерного диода и внешним плоским зеркалом с коэффициентом отражения R₀ = 0,85; прецизионное изменение длины составного резонатора осуществлялось с помощью микрометрического винта и и пьезоэлемента. В ряде экспериментов в качестве внешнего зеркала использовался полированный торец стекловолокна (R₂ = 0,04).

(0		20		4	40		E	50		8	D		100		200		400	600		L., нкм
	40	D	8		0	0			4		a	9			15			8			=1
		1	*		8												 -	ŧ	8	8	84
	28	4	۵	۵	۵	-16	4	-	8	8	8	1		ż							
	5	1		.4	*																
10	. 0														2			18.00	0	0	
	0.4	0	0	0	0	0	0	Ŷ	Ů	Ű		0	8	8		8					
	-					-							-								
r.			2																		
20	-																		2		
30																					
	I P) DT	H.	eī	τ.															

Р в с. І. Максимальные (черные значки) и минимальные (белые значки) значения выходной мощности инжекционного лазера длиной 480 мкм в зависимости от длины составного резонатора L при токе накачки I4,4 A (I), I3,I A (2), I2,7 A (3). Пороговый ток I2,3 A, толщина активной области 2 мкм

Установка зеркал составного резонатора производилась по лучу газового лазера. Мощность излучения измерялась фотодиодом ФД?К, помещенным около противоположного торца лазера.

На рис. І приведена зависимость выходной мощности излучения инжекционного лазера с составным резонатором от длины последнего L при различных уровнях накачки. При L<100 мкм мощность излучения имеет пульсирующий характер (на рис. I сплошными значками показаны максимальные, а полыми – минимальные значения мощности выходного излучения). Такой характер зависимости обусловлен изменением эффективного коэффициента отражения R₂ составного ре-

зонатора, который фактически является интерферометром Фабри-Перо. Этот экспериментальный факт мы использовали для определения в и о по известным формулам для порогового тока I и дифференциальной эффективности л:

$$\Delta I_{n} = (1/2\beta L_{0}) \ln(R_{2}/R_{1}), \qquad (I)$$

$$\eta = \frac{\hbar\omega}{e} \frac{\ln(1/\sqrt{R_1R_2})}{\alpha I_0 + \ln(1/\sqrt{R_1R_2})} \eta_{\rm H}, \qquad (2)$$

где L_0 – длина собственного резонатора лазера (лазерного длода), R_1 – коэффициент отражения собственного резонатора ($R_1 = 0.32$), η_H – эффективность накачки (отношение числа электронно-дирочных нар, введенных в активную область, к числу электронов, пересекающих р-п переход).

Эффективный коэффициент отражения R_2 для малых значений L вычислялся по методу, предложенному в работе /3/, с учетом коэффициентов связи для пучков Эрмита-Гаусса /4/. Зависимость $R_2(L)$ при больших значениях L приведена в работе /5/ в приближении илоских волн, однако в работе /6/ указано на несогласие подобного расчета с экспериментальными результатами. Расчет в приближении гауссовых пучков с учетом искривления волнового фронта, по-видимому, может объяснить изменение фазы, наблюдавшееся в работе /6/. Результаты нашего расчета приведены на рис. 2. Параметром семейства кривых является эффективная ширина изучающей области w_{ox} /7/; в случае, реализуемом в напих экспериментах, эта величина составляет I,5 мкм. Из рис. 2 видно, что при L = 1-3 мкм $R_2 = 0.85$. Результаты измерения параметров β и о приведены в табл. I.

Таблица I

L, MKM	R ₂	r	I _n , кА.см ⁻²	β,	см.А-І	xIO ³	ã	a, cm ^{-I}				
I	0,85	7,8	5,58				I6,5			TO		
I 5	0,70	8,3	6,II	6,2		5,5		I6		10		II,5
00	0,32	9,0	7,7		5,8				I4		11	

Здесь $\widetilde{\alpha} = \alpha + \mathbf{j}_0 \beta$, где α определено из измерения дифференциальной эффективности по ватт-амперной характеристике по формуле (2),

Рис. 2. а) Рассчитанные значения эффективного коэффициента отражения R₂ составного резонатора, образованного торцом лазерного диода и внешним зеркалом в зависимости от его длины L. Параметр семейства кривых - эффективная ширина излучающей области W_{ox} = = 0,3 мкм (I), 0,6 мкм (2), 0,9 мкм (3), I,2 мкм (4), I,5 мкм (5) 6) Огибающие максимальных (верхние кривые) и минимальных (нижние кривые) значений R₂ в зависимости от L

а а определено из порогового условия (J₀ - порог инверсии /8/); в определено по формуле (I). Экспериментальные значения коэффициентов усиления и потерь, приведенные в табл. I, были сравнены со значениями, определенными по традиционной методике серебрения собственного резонатора лазерного диода. Совпадение оказалось в пределах 10%.

Пульсирующий характер выходной мощности в зависимости от величины L наблидается и в тех случаях, когда R невелико /II/.

Эффект составного резонатора может возникать при непосредственной стиковке лазера с волоконным световодом, поскольку торец световода может играть роль внешнего зеркала. На этот факт обращено внимание в /9-13/. Если расстояние между торцами лазера и световода в силу механических или термических нестабильностей в устройстве ввода изменяется на величину порядка x/2 и более, то эффективность ввода осниллирует в соответствии с коэфиниентом продускания зазора (являщегося интерферометром Фабри-Перо), а, кроме того, режим лазера изменяется вплоть до срыва генерации. Вследствие этих прух причин возникает нежелательная нестабильность ввоцимой в световод мощности издучения. Этот эффект быстро уменьшается с увеличением длины зазора и практически не наблюдается при микролинзовом согласовании лазера с многомодовым световодом /IO/. Однако для случая одномодового световода желательно весьма близкое расположение торцев лазера и световода, а введение микролинзи неэффективно. По-вицимому, является целесообразным в этом случае использовать Х/4-покрытие одного из торцов для исключения внешнего интерферометра Фабри-Перо, а другому торцу придать коэффициент отражения, обеспечиванщий оптимальную связь лазера с волоконным световодом. В таком устройстве влияние малой нестабильности длины зазора на вводимую в световод мощность может быть практически полностью устранено.

В заключение авторы выражают искренняю благодарность А. П. Богатову за полезные обсуждения и помощь в работе.

> Поступила в редакцию 6 февраля 1979 г.

Литература

- I. П. Г. Елисеев, И. Исмаилов, М. А. Манько, В. П. Страхов, Письма в ЖЭТФ, 9, 594 (1969).
- 2. А. П. Богатов, П. Г. Елисеев, М. А. Манько, А. В. Хайдаров, Чан Минь Тхай, Лазеры с перестраиваемой частотой, изд. АН УССР, Киев, 1973 г., стр. 173.
- 3. П. Г. Елисеев, Докторская диссертация, ФИАН, Москва, 1975 г.
- 4. Г. Когельник, Квазиоптика, Мир, М., 1975 г., стр. 210.
- 5. C. Voumard, R. Salathe, H. Weber, Appl. Phys., 12, 369 (1977).
- J. Nishizawa, H. Fukuda, M. Morishita. IEEE Journ. Quant. Electron., <u>QE-13</u>, 604 (1977).
- 7. П. Г. Елисеев, в сб. Квантовая электроника # 3, 120 (1971).
- 8. О. В. Богданкевич, С. А. Дарзнек, П. Г. Елисеев, Полупроводниковые лазеры, Наука, М., 1976 г.
- 9. E. Weidel, Opt. and Quant. Electr., 8, 301 (1976).
- Ю. П. Г. Елиссев, В. Н. Лавров, И. Н. Скопин, Препринт ФИАН № 177, 1978 г.
- 11. D. Kato, Opt. Commun., 26, 335 (1978).
- 12. I. Ikushima, M. Maeda, IEEE Quant. Electr., QE-14, 331 (1978).
- W. J. Burke, M. Ettenberg, H. Kressel, Appl. Opt., <u>17</u>, 2233 (1978).