УДК 533.9

О ДРЕЙФЕ ИОНОВ В ХОЛОДНОМ ГАЗЕ

С. А. Майоров^{1,2}

Рассмотрена задача о дрейфе ионов в таком сильном электрическом поле, что дрейфовая скорость ионов значительно превышает тепловую скорость атомов. Для случая, когда масса ионов совпадает с массой частиц газа, рассеяние изотропно в системе центра инерции и сечение рассеяния ионов не зависит от скорости столкновения (модель жестких сфер). Методом Монте-Карло рассчитана функция распределения ионов по скоростям, определены ее характеристики и коэффициенты диффузии. Проведено сравнение с известными численными и аналитическими решениями. Получено, что средние характеристики (скорость дрейфа, продольная и поперечная температуры) очень хорошо совпадают со значениями, полученными из интегральных соотношений для двухтемпературного распределения Максвелла, но само распределение ионов по скоростям значительно отличается от сдвинутого двухтемпературного максвелловского распределения.

Ключевые слова: газовый разряд, подвижность ионов, Монте-Карло, ион-атомные столкновения, скорость дрейфа, газоразрядная плазма, резонансная передача заряда, функция распределения ионов.

Характеристики ионного потока могут быть определены путем решения кинетического уравнения Больцмана для функции распределения ионов f(v):

$$\frac{\partial f}{\partial t} + v\Delta f + \frac{eE}{m}\frac{\partial f}{\partial v} = I_{\rm st}(f),\tag{1}$$

где e – заряд, m – масса ионов, $I_{\rm st}(f)$ – интеграл столкновений.

Рассмотрим задачу о дрейфе и
онов в сильном электрическом поле, так что дрейфовая скорость и
онов значительно превышает тепловую скорость атомов:
 $W \gg$

 $^{^{1}}$ ИОФ РАН, 119991 Россия, Москва, ул. Вавилова, 38; e-mail: mayorov_sa@mail.ru.

 $^{^2}$ Объединенный институт высоких температур РАН, 125412 Россия, Москва, ул. Ижорская, 13.

 $(T_{\rm atom}/m)^{1/2}$. Ограничимся случаем, когда масса ионов совпадает с массой частиц газа, рассеяние изотропно в системе центра инерции, и сечение рассеяния ионов не зависит от скорости столкновения (модель жестких сфер).

В известном решении этой задачи [1] функция распределения ионов по скоростям задавалась в виде сдвинутого двухтемпературного распределения Максвелла:

$$f_0(\bar{v}) = \left(\frac{m}{2\pi T_i}\right)^{3/2} \exp\left(-\frac{m(u-W)^2}{2T_{\parallel}} - \frac{m(v^2+w^2)}{2T_{\perp}}\right),\tag{2}$$

где $T_i = (T_{\parallel}T_{\perp}^2)^{1/3}$, а T_{\parallel} и T_{\perp} – температуры в направлении поля и поперек него, соответственно. Параметры, входящие в выражение для функции распределения ионов (2), найдены из интегральных соотношений для средних характеристик иона [1] и равны:

$$W = 1.07 (eE\lambda/m)^{1/2}, \ T_{\parallel} = 0.555 eE\lambda, \ T_{\perp} = 0.294 eE\lambda,$$
(3)

где $\lambda = 1/\sigma n$ – длина свободного пробега, здесь σ – сечение ион-атомных столкновений, n – числовая плотность атомов.

Таблица 1

Безразмерные значения скорости дрейфа, средней энергии, температур и коэффициентов диффузии в направлениях вдоль и поперек поля

	W/u_{λ}	$\langle \varepsilon \rangle / \varepsilon_{\lambda}$	$T_{\parallel}/\varepsilon_{\lambda}$	$T_{\perp}/\varepsilon_{\lambda}$	$D_{\parallel}/D_{\lambda}$	D_{\perp}/D_{λ}
[1], прибл. реш.	1.07		0.555	0.294		
[1], точное реш.	1.14	1.170	0.454	0.293		
Monte Carlo	1.1467	1.1723	0.4431	0.2933	0.324	0.477

В табл. 1 приведены результаты расчетов методом Монте-Карло значений скорости дрейфа, продольной и поперечной температур, средней энергии ионов и коэффициентов диффузии в продольном и поперечном направлениях. Выберем величины $u_{\lambda} = (eE\lambda/m)^{1/2}$ и $\varepsilon_{\lambda} = eE\lambda$ в качестве характерного значения скорости и характерной энергии, соответственно. В качестве характерного значения коэффициента диффузии выберем величину $D_{\lambda} = \lambda (eE\lambda/m)^{1/2}$, тогда коэффициент диффузии для жестких сфер в первом приближении Чепмена–Энскога в безразмерном виде равен $D_{C-E}/D_{\lambda} = 3\sqrt{\pi}/8 \approx 0.66466$. Численные коэффициенты в (3) являются значениями безразмерной скорости дрейфа, продольной и поперечной температур и они приведены в первой строке табл. 1. Точное решение задачи согласно [1] дает следующие значения:

$$W/u_{\lambda} = 1.14, \ T_{\parallel}/\varepsilon_{\lambda} = 0.454, \ T_{\perp}/\varepsilon_{\lambda} = 0.293,$$
(4)

56

и они приведены во второй строке табл. 1. Различие в значениях характеристик дрейфа (3), найденных из интегральных соотношений для средних характеристик дрейфа иона, и точным решением согласно [1] характеризует точность использованного метода.

Моделирование методом Монте-Карло является прямым методом решения задачи, в котором не используется предположение о функциональном виде функции распределения. Соответственно, оно позволяет получить решение рассматриваемой задачи с любой точностью. Средние характеристики дрейфа иона, полученные в результате такого моделирования, приведены в третьей строке табл. 1.

Анализ полученных методом Монте-Карло результатов моделирования данных показывает (см. строки 2 и 3 табл. 1), что средние характеристики дрейфа ионов в холодном газе очень хорошо совпадают с результатами точного решения задачи в рамках модели двухтемпературного сдвинутого распределения Максвелла.

Рис. 1: Функция распределения ионов по продольной скорости в линейной и в логарифмической шкале. Сплошные кривые – распределения Максвелла (2) при значениях параметров распределения (4), кружочки – расчет Монте-Карло.

Однако представляет интерес сравнение рассчитанных распределений ионов по скоростям с распределением Максвелла. На рис. 1 и 2 представлены результаты расчетов функций распределения ионов по продольной и поперечной скоростям. Сплошные кривые – распределения Максвелла (2) при значениях параметров распределения (4). Для демонстрации различий в теле функции распределения (область тепловых энергий) и в хвостах приведены значения функций распределения как в линейной, так и в логарифмической шкале.

Рис. 2: Функция распределения ионов по поперечной скорости в линейной и в логарифмической шкале. Сплошные кривые – распределения Максвелла (2) при значениях параметров распределения (4), кружочки – расчет Монте-Карло.

Оказывается, что, несмотря на очень хорошее совпадение средних характеристик, функции распределения в области тепловых энергий различаются очень сильно, а в хвостах имеют разные асимптотики. Обсуждение причин этого явления не входит в задачу настоящего краткого сообщения, сошлемся лишь на работы [3–15], где затрагиваются различные аспекты задачи о распределении ионов по скоростям в газовых разрядах. Неожиданный и удивительный результат.

Таблица 2

Результаты расчетов характеристик потока ионов 4 а.е.м. при дрейфе в газе атомов той же массы, с температурой 293 K, плотностью $n_a = 10^{16}$ см⁻³ и значении приведенной напряженности электрического поля

E/N = 1 Td. Приведены значения средней энергии ионов, скорости дрейфа, коэффициенты диффузии вдоль и поперек поля, продольной и поперечной температур

	$\langle \varepsilon \rangle$, meV	W, m/s	$D_l,{ m cm}^2/{ m s}$	$D_t, { m cm}^2/{ m s}$	$T_{\parallel}, \mathbf{K}$	T_{\perp}, K
[2]	42.71	336.8	8.84	8.94	322.0	307.4
Monte Carlo	42.68	336.6	8.63	8.77	321.5	307.5

В работе [2] получено решение кинетического уравнения Больцмана для ионов и атомов с массой 4 а.е.м. при плотности атомов $n_a = 10^{16}$ см⁻³, температуре 293 К и значении приведенной напряженности электрического поля E/N = 1 Td. В табл. 2 приведены средние характеристики дрейфа ионов [2], а для сравнения также и результаты расчета, полученные в настоящей работе методом моделирования Монте-Карло. Коэффициент диффузии для жестких сфер в первом приближении Чепмена–Энскога для этого случая равен $D_{C-E} \approx 8.645 \ {
m cm}^2/{
m c}.$

Как и в предыдущей задаче, имеется очень хорошее совпадение средних характеристик (см. строки 2 и 3 табл. 2), несколько большие погрешности в определении коэффициентов диффузии обусловлены некоторыми особенностями, рассмотрение которых не является целью настоящего краткого сообщения, а будет рассмотрено в отдельной работе.

Итак, рассмотрим средние энергетические характеристики дрейфа ионов. Наверное, наиболее важной характеристикой ионного потока является средняя кинетическая энергия ионов, которая связана с эффективной температурой ионов соотношением

$$\langle \varepsilon \rangle = \frac{1}{2} m \langle v^2 \rangle = \frac{3}{2} T_{\text{eff}}.$$
 (5)

Именно эффективная температура ионов должна учитываться при определении макроскопических характеристик плазмы, например, радиуса Дебая.

Если средняя энергия хаотического движения ионов вдоль поля и поперек него сильно отличаются, и функция ионов по скоростям задается в виде сдвинутого двухтемпературного распределения Максвелла (2), то в этом случае средняя энергия иона равна:

$$\langle \varepsilon \rangle = \frac{1}{2}mW^2 + \frac{3}{2}T_i = \frac{1}{2}mW^2 + \frac{1}{2}T_{\parallel} + T_{\perp}.$$
 (6)

Соответственно, тепловой разброс скоростей ионов характеризуется температурой $T_i = \frac{1}{3}T_{\parallel} + \frac{2}{3}T_{\perp}$ и тепловой скоростью ионов $V_T = (T_i/m)^{1/2}$. В этом случае средняя энергия иона складывается из энергии направленного движения и тепловой энергии.

В заключение настоящего сообщения сделаем следующие выводы:

 Средние характеристики дрейфа ионов весьма хорошо (лучше 1%) могут быть определены на основе гидродинамической модели с различающимися в направлениях вдоль и поперек поля температурами;

 Функции распределения ионов по скоростям при этом весьма сильно отличаются от распределения Гаусса (Максвелла) не только в области тепловых энергий, но и в хвостах, где асимптотики отличаются от нормального распределения;

3) Число Маха, определяемое отношением скорости дрейфа к тепловой скорости, имеет значение порядка единицы ($M = W/V_T \approx 1.96$), поэтому даже в криогенных разрядах поток ионов не может быть сильно сверхзвуковым из-за того, что, помимо учтенного в модели взаимодействия жестких сфер, будут присутствовать также поляризационное взаимодействие и резонансная передача заряда (рассеяние назад);

4) Энергетический коэффициент Таунсенда, определяемый отношением коэффициентов диффузии и подвижности, сильно отличается как от поперечной температуры, так и от продольной и эффективной, определяемой по средней энергии ионов.

ЛИТЕРАТУРА

- [1] Б. М. Смирнов, Физика слабоионизованного газа в задачах с решениями (М., Наука, 1988).
- [2] R. D. White, R. E. Robson, and K. F. Ness, Com. Phys. Comm. 142, 349 (2001).
- [3] S. N. Antipov, E. I. Asinovskii, A. V. Kirillin, et al., J. Exp. Theor. Phys. 106, 830 (2008).
- [4] С. А. Майоров, Физика плазмы **35**(9), 869 (2009).
- [5] Р. И. Голятина, С. А. Майоров, Краткие сообщения по физике ФИАН 42(10), 21 (2015).
- [6] S. A. Khrapak, J. Plasma Physics **79**, Part 6, 1123 (2013).
- [7] E. A. Mason and E. W. McDaniel, Transport Properties of Ions in Gases (New York, Wiley, 1988).
- [8] J. V. Jovanovi, S. B. Vrhovac, and Z. L. Petrovic, Eur. Phys. J. D 21, 335 (2002).
- [9] M. Lampe, T. B. Röcker, G. Joyce, et al., Phys. Plasmas 19, 113703 (2012).
- [10] D. Else, R. Kompaneets, and S. V. Vladimirov, Phys. Plasmas 16, 062106 (2009).
- [11] Z. Ristivojevic and Z. Petrovic, Plasma Sources Sci. Technol. 21, 035001 (2012).
- [12] H. Wang, V. S. Sukhomlinov, I. D. Kaganovich, and A. S. Mustafaev, Plasma Sources Sci. Technol. 26, 024001 (2017).
- [13] Р. И. Голятина, С. А. Майоров, Краткие сообщения по физике ФИАН 39(7), 30 (2012).
- [14] R. I. Golyatina and S. A. Maiorov, Plasma Phys. Rep. 43(1), 75 (2017).
- [15] С. А. Майоров, Р. И. Голятина, С. К. Коданова, Т. С. Рамазанов, Успехи прикладной физики 3(5), 447 (2015).
- [16] S. A. Maiorov, S. K. Kodanova, R. I. Golyatina, and T. S. Ramazanov, Physics of Plasmas 24, 063502 (2017); doi: 10.1063/1.4984784.

Поступила в редакцию 18 сентября 2019 г.

После доработки 27 сентября 2018 г.

Принята к публикации 3 декабря 2018 г.