УДК 539.12

УГЛОВОЙ АНАЛИЗ ПРОЦЕССА е⁺e⁻ → D^{(*)±}D^{*∓} ВБЛИЗИ ПОРОГА РОЖДЕНИЯ ОТКРЫТОГО ЧАРМА С ИЗЛУЧЕНИЕМ В НАЧАЛЬНОМ СОСТОЯНИИ

В.И. Жукова

В работе представлены результаты измерения эксклюзивного сечения процесса $e^+e^- \rightarrow D^{(*)\pm}D^{*\mp}$ вблизи порога рождения открытого чарма с излучением в начальном состоянии. Анализ основан на экспериментальных данных, набранных детектором Belle при энергиях \sqrt{s} , равных энергиям рождения $\Upsilon(4S)$, $\Upsilon(5S)$ и близлежащего континуума, соответствующих интегральной светимости 951 fb⁻¹. Точность измерения сечений улучшена в два раза по сравнению с предыдущими результатами коллаборации Belle. Для конечного состояния $D^{*+}D^{*-}$ впервые проведён угловой анализ, в результате которого сечение разложено на три компоненты, соответствующие возможным комбинациям поляризаций D^* -мезонов в конечном состоянии.

Ключевые слова: чармоний, электрон-позитронная аннигиляция, угловой анализ.

Несмотря на многочисленные усилия экспериментаторов и теоретиков, природу и свойства векторных состояний чармония, лежащих выше порога рождения открытого чарма, нельзя считать полностью изученными. Долгое время значения масс и ширин таких резонансов определялись из анализа инклюзивного сечения электрон-позитронной аннигилляции в адроны [1]. Однако определённые таким образом параметры являются модельно-зависимыми и извлекаются с большими статистическими неопределённостями. Напротив, измерение эксклюзивных сечений позволит не только определить значения масс и ширин векторных состояний чармония модельно-независимым образом, но также извлечь константы их связи с упругими каналами с открытым чармом [2]. Это позволит получить информацию о волновых функциях векторного чармония и даст возможность проверить феноменологические модели тяжёлых адронов.

ФИАН, 119991 Россия, Москва, Ленинский пр-т, 53; e-mail: zhukova@lebedev.ru.

Анализ основан на данных, набранных детектором Belle при энергиях рождения $\Upsilon(4S)$, $\Upsilon(5S)$ и близлежащего континуума, соответствующих интегральной светимости 951 fb⁻¹.

Метод. Для отбора сигнальных событий использовался метод частичной реконструкции конечного состояния. В частности, восстанавливался энергетичный фотон и один очарованный мезон (*D*-мезон для процесса $e^+e^- \to DD^*$ и $D^* - для \ e^+e^- \to D^*D^*$). Для сигнальных событий распределение масс отдачи к комбинации $D^{(*)}\gamma_{\rm ISR}$

$$M_{\rm recoil} = \sqrt{(E_{c.m.} - E_{D^{(*)}\gamma_{\rm ISR}})^2 - p_{D^{(*)}\gamma_{\rm ISR}}^2}$$
(1)

имеет пик вблизи значения массы D^* -мезона. Здесь γ_{ISR} – фотон, испущенный до аннигиляции, $E_{c.m.}$ есть энергия в системе центра масс, а $E_{D^{(*)}\gamma_{\text{ISR}}}$ и $p_{D^{(*)}\gamma_{\text{ISR}}}$ есть энергия и импульс системы $D^{(*)}\gamma_{\text{ISR}}$. Согласно результатам Монте-Карло моделирования этот пик ожидается широким и асимметричным из-за плохого определения импульса фотона. Таким образом, становится невозможным различить сигналы, соответствующие D-, D^* - и D^{**} -мезонам в конечном состоянии. Чтобы избежать этой проблемы, восстанавливался мягкий пион (π_{slow}) от распада второго D^* . В этом случае распределение разности масс отдачи к комбинациям $D^{(*)}\gamma_{\text{ISR}}$ и $D^{(*)}\pi\gamma_{\text{ISR}}$:

$$\Delta M_{\rm recoil} = M_{\rm rec}(D^{(*)}\gamma_{\rm ISR}) - M_{\rm rec}(D^{(*)}\pi\gamma_{\rm ISR})$$
⁽²⁾

имеет узкий пик вблизи разности масс D^{*+} - и D^0 -мезонов, поскольку неоределённость в определении импульса фотона частично сокращается.

Для вычисления эксклюзивных сечений процессов $e^+e^- \to D^{*+}D^{*-}$ и $e^+e^- \to D^+D^{*-}$ необходимо измерить массовый спектр комбинации $D^{(*)}\bar{D^*}$. При частичной реконструкции конечного состояния, когда один из очарованных мезонов не восстанавливается, можно считать, что масса комбинации $D^{(*)}D^*$ эквивалентна массе отдачи к γ_{ISR} :

$$M_{\rm rec}(\gamma_{\rm ISR}) = \sqrt{(E_{c.m.}^2 - 2E_{c.m.} \cdot E_{\gamma_{\rm ISR}})}.$$
(3)

Согласно результатам Монте-Карло моделирования разрешение по массе отдачи к $\gamma_{\rm ISR}$ недостаточно для изучения узких состояний чармония в спектре масс $D^{(*)}\bar{D^*}$. Это разрешение можно улучшить, если подобрать все параметры так, чтобы значение массы отдачи к комбинации $D^{(*)}\gamma_{\rm ISR}$ равнялось табличному значению массы D^* -мезона. Такая процедура подгонки использует хорошо измеренный импульс восстановленного $D^{(*)}$ -мезона, чтобы поправить импульс фотона. После такой процедуры разрешение по $M_{\rm rec}(\gamma_{\rm ISR})$ существенно улучшается.

Рис. 1: Разрешение по массе отдачи к $\gamma_{\rm ISR}$ для процессов (a) $e^+e^- \to D\bar{D^*} u$ (b) $e^+e^- \to D^*\bar{D^*}$ до (заштрихованная гистограма) и после (точки с ошибками) процедуры сведения $M_{\rm rec}(D^{(*)}\gamma_{\rm ISR}) \kappa M_{D^*}$.

Анализ. В исследуемые процессы вносят вклад следующие источники фона:

- 1) комбинаторные $D^{(*)}$ -кандидаты;
- 2) реальные $D^{(*)}$ -мезоны в сочетании с комбинаторными π -мезонами;
- 3) и $D^{(*)},$ и $\pi_{\rm slow}$ в конечном состоянии комбинаторные;
- 4) отражение процесса $e^+e^- \to D^{(*)}\bar{D^*} \pi^0_{\text{miss}}\gamma_{ISR}$ с потерянным π^0_{lost} ;
- 5) вклад процесса $e^+e^- \to D^{(*)}\bar{D^*} \pi^0_{\text{fast}}$, в котором π^0_{fast} идентифицирован как γ_{ISR} .

Рис. 2: Спектр инвариантных масс (a) $M(D\bar{D^*})$ и (b) $M(D^*D^*)$ после вычитания комбинаторного фона. Вклад процесса $e^+e^- \rightarrow D^{(*)}D^*\pi^0_{\text{miss}}\gamma_{\text{ISR}}$ показан пустыми кружками. На вставках представлены соответствующие распределения с вдвое меньшим бином.

Чтобы оценить вклад от комбинаторного фона (1)–(3), мы использовали двумерное распределение массы $D^{(*)}$ -кандидатов относительно разности масс отдачи к комбинациям $D^*\gamma_{\rm ISR}$ и $D^*\pi^0_{\rm slow}\gamma_{\rm ISR}$. Значительная часть вклада от процесса $e^+e^- \rightarrow D^{(*)}D^*\pi^0_{\rm miss}\gamma_{\rm ISR}$ подавлена ограничением на $M_{\rm recoil}(D^{(*)}\gamma_{\rm ISR}) |M_{\rm recoil}(D^{(*)}\gamma_{\rm ISR}) - M_{D^*}| < 300$ МэВ. Оставшийся вклад можно получить, измерив изоспин-сопряженный процесс $e^+e^- \rightarrow$ $D^{*0}D^{*-}\pi^+_{\rm miss}\gamma_{\rm ISR}$ и применив к нему аналогичный метод частичной реконструкции. Измеренные массовые спектры после вычитания комбинаторного фона представлены на рис. 2. Вклад фона (5) определялся из измерения процесса $e^+e^- \rightarrow D^{(*)}\bar{D}^*\pi^0_{\rm fast}$ с использованием метода частичного восстановления с заменой $\gamma_{\rm ISR}$ на энергетичный пион $\pi^0_{\rm fast}$. Такой вклад оказался принебрежимо мал, а неопределённость его оценки включена в систематическую ошибку.

Полученные сечения процессов $e^+e^- \to D\bar{D^*}$ и $e^+e^- \to D^*\bar{D^*}$ представлены на рис. 3.

Рис. 3: Эксклюзивное сечение процесса (a) $M(D\bar{D}^*)$ и (b) $M(D^*\bar{D}^*)$. На вставках представлены соответствующие распределения с вдвое меньшим бином.

Для процесса $e^+e^- \to D^*\bar{D}^*$ большой интерес представляет разложение сечения на составляющие, отвечающие трем различным поляризационным конечным состояниям. Начнём с углового анализа процесса $e^+e^- \to D\bar{D}^*$, в котором поляризация конечного D^* -мезона однозначно определяется законами сохранения импульса и чётности. Полученное разложение сечения на компоненты показано на рис. 4. Как и ожидалось, продольная компонента сечения флуктуирует вокруг нуля.

В процессе $e^+e^- \to D^*\bar{D^*}$ каждый из D^* -мезонов может быть поляризован продольно или поперечно (L и T соответственно). Иначе говоря, конечное состояние $D^*\bar{D^*}$ является смесью состояний $D_T^*\bar{D^*}_T$, $D_T^*\bar{D^*}_L$ и $D_L^*\bar{D^*}_L$. Полученные компоненты сечения (рис. 5) процесса $e^+e^- \to D^*\bar{D^*}$ имеют достаточно сложную форму. В частности, вблизи порога

Рис. 4: Компоненты эксклюзивного сечения процесса $e^+e^- \to DD^*$, соответствующие (a) поперечной и (б) продольной поляризациям D^* -мезона.

Рис. 5: Компоненты эксклюзивного сечения процесса $e^+e^- \to D^*\bar{D^*}$, соответствующие различным комбинациям поляризаций D^* -мезонов.

TT- и TL-компоненты быстро растут, в отличие от LL-компоненты. Кроме того, лишь одна из компонент (TL) не исчезает при больших энергиях.

Заключение. В работе представлены результаты измерения массовых спектров комбинаций $D\bar{D}^*$ и $D^*\bar{D}^*$, а также их эксклюзивных сечений. Полученные результаты хорошо согласуются с предыдущими измерениями коллаборации Belle [3], а точность измерения увеличена вдвое благодаря увеличению статистики, набранной детектором Belle, улучшению эффективности восстановления заряженных треков и добавлению новых каналов восстановления D-мезонов. Для конечного состояния $D^*\bar{D}^*$ впервые проведен угловой анализ, который позволил разложить сечение на три компоненты, соответствующие возможным комбинациям поляризаций D^* -мезонов. Показано, что эти компоненты по-разному ведут себя вблизи порога, а также что только одна из них (TLкомпонента) выживает при больших энергиях.

Данная работа выполнена при поддержке РФФИ (проект № 18-32-00091).

ЛИТЕРАТУРА

- [1] C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016).
- [2] T. V. Uglov, Y. S. Kalashnikova, A. V. Nefediev, et al., JETP Letters 105, 1, 3 (2017).
- [3] G. Pakhlova et al. (Belle Collaboration), Phys. Rev. Lett. 98, 092001 (2007).

Поступила в редакцию 15 августа 2018 г.

После доработки 18 марта 2019 г.

Принята к публикации 18 марта 2019 г.

Публикуется по результатам VII межинститутской молодежной конференции "Физика элементарных частиц и космология 2018" (ФИАН, Москва).