УДК 004.94 + 621.762:621.373.826:621.78

СТРУКТУРА И ФАЗОВЫЙ СОСТАВ ПЛЕНОК ИЗ ПОЛИВИНИЛИДЕНФТОРИДА, ПОЛУЧЕННЫХ ЛАЗЕРНЫМ СИНТЕЗОМ

А.И.Ибрагимова¹, И.И. Журавлева¹, С.И. Кузнецов², А.С. Панин², Е.Ю. Тарасова²

> В работе показана возможность получения пленок из модифицированного поливинилиденфторида (ПВДФ-2М) методом лазерного спекания. Исследовано влияние лазерного излучения с длиной волны 10.6 мкм на структуру полимера и качество спекания пленок.

Ключевые слова: лазерная обработка, поливинилиденфторид, толстые пленки, пьезоматериалы.

Введение. В последние годы одним из актуальных направлений в области физики, химии и технологии высокомолекулярных соединений является разработка методов получения пленок на основе поливинилиденфторида.

ПВДФ представляет собой фторсодержащий полимер с хорошими пьезо- и пироэлектрическими свойствами, благодаря которым он находит широкое применение в разных отраслях промышленности [1–4].

Для изготовления свободных, не закрепленных на подложке пленок на основе ПВДФ предложен ряд методов, каждый из которых имеет существенные ограничения и недостатки. Новым методом получения таких пленок может стать метод лазерного спекания, специфическими чертами которого являются локальность и малое время теплового воздействия на полимер. Некоторые особенности процесса лазерного спекания полимерных композиций на основе ПВДФ-2M с различным содержанием наполнителя (пьезокерамика ЦТС-19М) изложены в работе [5]. Однако структурно-фазовые изменения в ПВДФ при лазерной обработке, а также возможность получения пленок из чистого полимера методом лазерного спекания ранее не изучались.

¹ Самарский национальный исследовательский университет имени академика С.П. Королева, 443011 Россия, Самара, ул. Академика Павлова, 1; e-mail: aig.ibragimova2011@yandex.ru.

² Самарский филиал Физического института им. П. Н. Лебедева РАН, 443011 Россия, Самара, ул. Ново-Садовая, 221.

Цель данной работы – показать возможность получения пленок ПВДФ лазерным спеканием и изучить влияние лазерного излучения с длиной волны 10.6 мкм на структуру и качество спекания модифицированного ПВДФ-2М.

Материалы и методика эксперимента. В экспериментах использовали фракцию ПВДФ-2М с размерами частиц 15–50 мкм. Перед лазерной обработкой полимер прессовали на ручном гидравлическом прессе ПгПр под давлением 50 кгс/см² при комнатной температуре: размеры спрессованного слоя 30×60 мм² толщина 0.8 мм. Полученная в результате лазерной обработки поверхности прессовки полимерная пленка толщиной до 250 мкм механически отделялась от неспеченной части.

Спекание образцов проводили на лазерно-технологическом комплексе LSL, включающем непрерывный CO₂-лазер с длиной волны $\lambda = 10.6$ мкм и систему сканирования лазерным пучком, управляемую компьютером. Мощность излучения (P, BT), скорость сканирования (v, см/с) и диаметр лазерного пятна (D) варьировали в следующих пределах:

$$P = 5 - 31 \,\mathrm{Bt}, v = 0.8 - 66.7 \,\mathrm{см/c}, D = 0.3 - 0.85 \,\mathrm{см}$$

В качестве основных характеристик процесса лазерной обработки использовались плотность мощности лазерного излучения (q, BT/cm^2) и время воздействия (τ , c):

$$q = \frac{4P}{\pi D^2},\tag{1}$$

$$\tau = \frac{D}{v}.$$
(2)

Плотность образцов (ρ , г/см³) ПВДФ-2М определяли методом гидростатического взвешивания, открытую пористость ($K_{\rm n}$, %) – методом жидкостенасыщения по методике [6].

Структура и фазовый состав ПВДФ-2М изучались методом рентгеноструктурного и рентгенофазового анализа (РСА и РФА) на установке ДРОН-3 по стандартной методике. Полученные дифрактограммы в процессе съемки оцифровывались, затем обрабатывались с помощью специального программного обеспечения.

Результаты и обсуждение. Перед проведением основных экспериментов была определена область режимов обработки q и τ , позволяющих получать достаточно прочные, без следов явной деструкции ПВДФ пленки. В данной области выбраны режимы лазерного воздействия, при которых проведена обработка исходных заготовок для дальнейших исследований (табл. 1).

Таблица 1

q, BT/cm^2	τ , c	D_{α} , нм	D_{β} , нм	$d_{\alpha}, \mathrm{\AA}$	$d_{\beta}, \mathrm{\AA}$
_	—	4.0	6.4	4.8522	4.3328
	0.027	3.7	7.6	4.8737	4.3170
	0.030	2.3	7.0	4.8672	4.3352
60	0.034	3.9	7.9	4.9003	4.3279
	0.043	3.6	8.0	4.9263	4.3244
	0.017	4.3	8.2	4.9179	4.3243
	0.021	3.4	5.9	4.8517	4.3837
130	0.024	2.6	6.3	4.9160	4.3336
	0.033	3.6	7.5	4.8968	4.3452
	0.015	3.1	9.2	4.8960	4.3189
207	0.020	3.3	6.1	4.8537	4.3533
	0.030	3.5	5.2	4.8532	4.3923

Характеристики материалов, полученных методом спекания прессованных заготовок из ПВДФ-2М на СО₂-лазере

На рис. 1 показаны зависимости толщины полученных пленок, которая при выбранных параметрах обработки изменялась от 80 до 230 мкм, от плотности мощности и времени лазерного воздействия.

Рис. 1: Изменение толщины (δ) образцов в зависимости от времени воздействия ЛИ при плотностях мощности 60(1), 130(2), 207(3) Bm/cm^2 .

Результаты измерений открытой пористости и объёмной плотности полученных пленок в зависимости от режимов спекания представлены на рис. 2.

Рис. 2: Изменение объемной плотности (a) и открытой пористости (b) образцов в зависимости от времени воздействия (τ) ЛИ при различных значениях плотности мощности (q) : 60(1), 130(2) и 207(3) Bm/cM^2 .

В результате лазерной обработки происходит значительное возрастание открытой пористости и, соответственно, уменьшение объемной плотности по сравнению с исходной заготовкой ($K_{\pi \ \text{исx}} = 7\%$, $\rho_{\text{исx}} = 1.44 \ \text{г/cm}^3$). Как следует из рис. 2, пористость (и плотность) зависит от плотности мощности и времени воздействия, которые определяют температуру в зоне обработки. В общем случае величина пористости определяется температурой нагрева и временем выдержки при данной температуры. При традиционной обработке методом электропечного нагрева повышение температуры и времени обработки приводит к размягчению полимера и повышению эффективности "залечивания" пор. Кроме того, возможное изменение фазового состава полимера и его деструкция в результате нагрева могут приводить к объемной контракции образца и, как результат, к уменьшению пористости.

При лазерной обработке механизм "залечивания" пор, по-видимому, играет незначительную роль из-за малого времени воздействия. Можно предположить, что в случае лазерного спекания локальность термического воздействия ведет к локальной кристаллизации полимера, т.е. к уменьшению доли аморфной фазы и увеличению степени кристалличности имеющихся кристаллических фаз в зоне лазерного воздействия. Локальность кристаллизации ведет к локальности контракции, что в совокупности с термическими напряжениями, вызванными лазерным нагревом, приводит к увеличению пористости.

Такое предположение о механизме увеличения пористости подтверждается как ростом минералогической плотности, т.е. плотности "каркаса" с 1.55 до 1.83 г/см³, так и результатами РФА и РСА (табл. 1).

В табл. 1 D_{α} и D_{β} – размер области когерентного рассеяния (OKP); d_{α} и d_{β} – межплоскостное расстояние для α - и β -фаз соответственно.

РФА показал, что в исходном полимере присутствуют две кристаллические фазы – α и β. После лазерной обработки фазовый состав не меняется, при этом относительная доля α-фазы либо равна ее содержанию в исходном ПВДФ, либо несколько увеличивается.

Для α -фазы обработанного материала межплоскостное расстояние d_{α} немного больше, чем у α -фазы исходного ПВДФ; для β -фазы d_{β} при q = 60 и 130 Вт/см² почти соответствует межплоскостному расстоянию в исходном ПВДФ; при q = 207 Вт/см² d_{β} растет с увеличением времени воздействия. По-видимому, лазерное воздействие приводит к искажениям элементарных ячеек кристаллов, причем полимер в α -фазе более чувствителен к лазерному воздействию, чем в β -фазе, однако точнее характер изменений можно определить только с помощью ИК-спектроскопии.

Размер областей когерентного рассеяния (ОКР) определяли по формуле Шеррера:

$$D = \frac{0.9\lambda}{FWHM \cdot \cos\theta},\tag{3}$$

где $\lambda = 1.54056$ Å– длина волны рентгеновского излучения, FWHM – ширина дифракционного пика на половине высоты, θ – угол дифракции.

Средний размер кристаллитов α -фазы в исходном ПВДФ составляет 4 нм, β -фазы – 6.4 нм. При лазерной обработке средний размер кристаллитов α -фазы снижается до 2.3 нм в зависимости от режимов воздействия. Можно предположить, что снижение среднего размера кристаллитов α -фазы происходит в результате кристаллизации аморфной фазы в α -фазу с образованием большого количества мелких кристаллитов. Размер кристаллитов β -фазы, наоборот, возрастает до 9.2 нм, кроме режима $q = 207 \text{ BT/cm}^2$ при $\tau = 0.02 - 0.03$ с, когда размер OKP (*D*) резко падает. По-видимому, на этом режиме начинают протекать активные процессы термоокислительной деструкции.

Таким образом, в результате лазерной обработки происходит очевидное увеличение степени кристалличности полимера. Причем содержание β -фазы, по сравнению с исход-

ным ПВДФ, снижается незначительно. Сохранение пьезоактивной β -фазы после лазерной обработки является несомненным преимуществом данного метода по сравнению с традиционным спеканием в электропечи, так как при равновесном нагреве происходит полное превращение β -фазы в α .

Заключение. Показана возможность получения пленок из ПВДФ-2М методом лазерной обработки.

Толщина пленок находится в диапазоне 80–230 мкм и зависит от режимов лазерного воздействия.

Фазовый состав пленок по сравнению с исходным материалом практически не изменяется, однако наблюдается частичная кристаллизация при достижении определенных значений плотности мощности и времени воздействия.

Открытая пористость спеченных материалов зависит от режимов обработки и может достигать 62%. Увеличение пористости обусловлено возникновением термических напряжений при локальном лазерном нагреве и контракцией обрабатываемого материала в результате структурных изменений.

Пьезоактивная β -фаза ПВДФ-2М сохраняется при лазерной обработке.

ЛИТЕРАТУРА

- C. Byrappa, B. S. Ajay Kumar, and H. Anupama, Int. J. Mech. Eng. Robot. Res. 2(1), 1 (2013).
- [2] P. Martins, A. C. Lopes, and S. Lanceros-Mendez, Progress in Polymer Science 39(4), 683 (2014).
- [3] H. M. Ren, Y. H. Ding, and F. H. Chang, Applied Surface Science 263, 54 (2012).
- [4] Sh. Nambiar and J. T. W. Yeow, Biosensors and Bioelectronics 26(5), 1825 (2011).
- [5] И. И. Журавлева, Е. Ю. Тарасова, С. И. Кузнецов и др., Пластические массы, № 3-4, 30 (2018).
- [6] ГОСТ 26450.1-85 Породы горные. Метод определения коэффициента открытой пористости жидкостенасыщением (София, 1985).

Поступила в редакцию 18 января 2019 г.

После доработки 28 марта 2019 г.

Принята к публикации 29 марта 2019 г.

Публикуется по результатам XVI Всероссийского молодежного Самарского конкурсаконференции по оптике и лазерной физике (Самара).