УДК 53.05

ТЕПЛОВОЕ СОПРОТИВЛЕНИЕ НА ЭПИТАКСИАЛЬНОЙ ГРАНИЦЕ YBaCuO И PrBaCuO

А.В. Варлашкин

Среди классических применений сверхпроводимости важное место занимают сверхпроводниковые болометры, представляющие собой полоску из тонкой пленки сверхпроводника в резистивном состоянии [1–4]. В настоящей работе мы исследовали образцы ВТСП болометров на основе $YBa_2Cu_3O_{7-\delta}$ с защитным слоем $PrBa_2Cu_3O_x$. Из отклика на импульсы $Ti:Al_2O_3$ лазера была впервые получена количественная оценка теплового сопротивления на эпитаксиальной границе $YBa_2Cu_3O_{7-\delta}$ - $PrBa_2Cu_3O_x = (0.3 \div 1.3) \cdot 10^{-3} K \cdot cm^2/Bm$.

Ключевые слова: тонкопленочные микроболометры, ВТСП, YBaCuO, защитный слой.

Среди классических применений сверхпроводимости важное место занимают высокочастотные и быстродействующие устройства. Быстродействующие, чувствительные детекторы и смесители с широким спектральным диапазоном требуются в различных областях науки и техники. Применение высокотемпературных сверхпроводников не только позволяет повысить рабочую температуру детектора и удешевить охлаждение, но и расширить его спектральный диапазон.

Такими чувствительными детекторами могут быть сверхпроводниковые болометры, представляющие собой полоску из тонкой пленки сверхпроводника в резистивном состоянии. Большая крутизна сверхпроводящего перехода, скорость переключения и нелинейность позволяют строить на основе таких структур чувствительные и быстродействующие детекторы [1], смесители [2] и другие высокочастотные устройства [3]. При этом на основе той же пленки можно сделать необходимые линейные компоненты системы, т.е. линии и фильтры [4].

Чувствительность болометра определяется его массой, а быстродействие болометра – скоростью охлаждения активного элемента – тонкой пленки. Так как оба эти па-

ФИАН, 119991 Россия, Москва, Ленинский пр-т, 53; e-mail: varlashkinav@lebedev.ru.

раметра улучшаются с уменьшением толщины пленки, то весьма желательно использовать как только возможно более тонкие пленки, толщиной порядка нескольких периодов кристаллической решетки. В отношении YBa₂Cu₃O_{7-δ} оказалось, однако, что такие тонкие пленки очень неустойчивы к термоциклированию и атмосферному воздействию. Поэтому в этих устройствах приходится использовать те или иные защитные слои. В этих случаях важными становятся свойства границы активного элемента болометра и защитного слоя. В данной работе мы обнаружили, что даже эпитаксиальная граница близких по структуре и составу веществ может иметь значительное тепловое сопротивление.

В настоящей работе для изучения теплового сопротивления на эпитаксиальной границе $YBa_2Cu_3O_{7-\delta}$ -PrBa_2Cu_3O_x мы исследовали образцы ВТСП микроболометров на основе $YBa_2Cu_3O_{7-\delta}$ с защитным слоем PrBa_2Cu_3O_x. Для получения болометров вначале на подготовленную подложку из MgO последовательно без разрыва вакуума осаждали слои $YBa_2Cu_3O_{7-\delta}$, PrBa_2Cu_3O_x и Au. Осаждение осуществлялось методом импульсного лазерного распыления с использованием скоростной фильтрации, подробно метод описан в [5]. Затем полученные многослойные структуры подвергались литографии, в результате которой формировался рисунок, содержащий микромостик, состоящий из пленки $YBa_2Cu_3O_{7-\delta}$, покрытой защитным слоем $PrBa_2Cu_3O_x$, и подводящую копланарную линию из Au и антенну, технология детально описана в [6].

Рис. 1: Зависимость времени ухода фононов в подложку τ_{es} от толщины (эффективной толщины) d пленки. (•) – $\tau_{es}(d)$ для плёнки $YBa_2Cu_3O_{7-\delta}$ без покрытия [7]; $\tau_{es}(d)$ для плёнки $YBa_2Cu_3O_{7-\delta}$ – $PrBa_2Cu_3O_x$: (\Box) $d = d_Y$, (\blacksquare) $d = (d_Y + d_{Pr})$, (\boxplus) $d = d_{eff}$.

Полученные микроболометры устанавливали в оптический криостат и исследовали отклик на импульсы Ti:Al₂O₃ лазера с длительностью импульса около 100 фемтосекунд [6]. В сигнале микроболометра наблюдался короткий пик, связанный с детектированием "горячих" электронов ($\tau_{ep} = 2.2$ пс). За этим пиком следовал похожий на экспоненциальный спад, связанный с выходом фононов в подложку. Далее данные на участке этого спада аппроксимировали функцией $\exp(-t/\tau_{es})$.

Таблица 1

Образец, #	685-2	609-2	606-2
Толщина пленки ҮВСО, нм	26	34	50
Толщина пленки PrBCO, нм	9	34	50
Толщина пленки Аu, нм	80	200	230
Критическая температура пленки T_c , K, по измерению $\chi(T)$	86.6	86.2	86.7
Ширина перехода пленки ΔT_c , K, по измерению $\chi(T)$	2.8	1.0	0.6
Длина мостика, мкм	3.5	9	3.5
Ширина мостика, мкм	4	3	3
Сопротивление мостика R (при 90 K), Ом	200	320	120
Критическая температура мостика T_c , K, по измерению $R(T)$	88.0	85.5	89.0
Ширина перехода мостика ΔT_c , K, по измерению $R(T)$	2.2	2	2
Время выбега фононов $ au_{\rm es}$, нс	1.3	2.4	3.4
Эффективная толщина $d_{\rm eff}$, нм	30	45	67

Данные образцов

Полученные данные о времени выбега фононов $\tau_{\rm es}$ приведены в табл. 1 вместе с другими данными микроболометров.

Сравнение с данными о времени выбега фононов τ_{es} для пленки YBa₂Cu₃O_{7- δ} без защитного слоя [7] (рис. 1) показало, что хотя τ_{es} и возрастает с толщиной пленки, однако для этих образцов оно не соответствует ни толщине пленок YBa₂Cu₃O_{7- δ} (рис. 1, \Box) или PrBa₂Cu₃O_x, ни их сумме (рис. 1, \blacksquare).

Чтобы оценить время ухода фононов из двуслойной $YBa_2Cu_3O_{7-\delta}/PrBa_2Cu_3O_x$ структуры с толщиной слоев d_Y ($YBa_2Cu_3O_{7-\delta}$) и d_{Pr} ($PrBa_2Cu_3O_x$) можно воспользоваться рассуждением [6] и рассчитать эффективную толщину пленки по ф. (6) работы [6]:

$$d_{\rm eff} = d_Y \left[1 + \frac{d_{\rm Pr}}{(2d_Y + d_{\rm Pr})} \right]. \tag{1}$$

5

Эффективная толщина d_{eff} , рассчитанная таким образом, приведена в табл. 1. Время выхода фононов в зависимости от эффективной толщины приведено на рис. 1 квадратами с крестом. Видно, что зависимость времени выхода фононов от таким образом определенной эффективной толщины хорошо согласуется с ожидаемой линейной зависимостью и данными других измерений для плёнок без покрытия [7].

В то же время в рамках этой модели [6] можно численно оценить $R_{\rm YPr}$ – тепловое сопротивление на границе YBCO/PrBCO. Ограничим наше рассмотрение временем после установления равновесия между электронами и фононами в пленке YBa₂Cu₃O_{7- δ}, так что внешний по отношению к фононам нагрев отсутствует. Положим также, что $R_{\rm PrY} = R_{\rm YPr}$, а температура подложки постоянна, и будем отсчитывать температуру от нее. Составим систему дифференциальных уравнений теплового баланса для пленок YBa₂Cu₃O_{7- δ} (T_Y) и PrBa₂Cu₃O_x ($T_{\rm Pr}$):

$$d_Y c_Y \frac{dT_Y}{dt} = -\frac{1}{R_{\rm YPr}} (T_Y - T_{\rm Pr}) - \frac{1}{R_{\rm YMg}} T_Y, \qquad (2)$$

$$d_{\rm Pr}c_{\rm Pr}\frac{dT_{\rm Pr}}{dt} = \frac{1}{R_{\rm YPr}}(T_Y - T_{\rm Pr}),\tag{3}$$

где c_{Pr} – удельная теплоемкость PrBa₂Cu₃O_x, при температуре наших измерений равная 1.2 Дж/K·см³ [8]. Простые преобразования приводят их к виду:

$$C_Y \frac{dT_Y}{dt} = Y_{\rm YPr} T_{\rm Pr} - (Y_{\rm YPr} + Y_{\rm YMg}) T_Y, \tag{4}$$

$$C_{\rm Pr}\frac{dT_{\rm Pr}}{dt} = -Y_{\rm YPr}T_{\rm Pr} + Y_{\rm YPr}T_{\rm Y},\tag{5}$$

$$Y_{\rm YPr} = \frac{1}{R_{\rm YPr}}, \quad Y_{\rm YMg} = \frac{1}{R_{\rm YMg}}, \quad C_Y = d_Y c_Y, \quad C_{\rm Pr} = d_{\rm Pr} c_{\rm Pr}.$$
 (6)

Для начальных условий $T_Y = T_0$, $T_{Pr} = 0$, где T_0 – температура пленки YBa₂Cu₃O_{7- δ} в момент начала охлаждения, решение уравнений имеет вид:

$$T_Y = A_1 \exp(\lambda_1 t) + A_2 \exp(\lambda_2 t), \tag{7}$$

$$T_{\rm Pr} = (\exp(\lambda_1 t) - \exp(\lambda_2 t)) \frac{A_1 A_2 (\lambda_1 - \lambda_2)}{T_0} \frac{C_Y}{Y_{\rm YPr}},\tag{8}$$

$$\lambda_{1,2} = \frac{1}{2C_Y C_{\rm Pr}} \left(-Z \pm \sqrt{Z^2 - 4C_Y C_{\rm Pr} Y_{\rm YMg} Y_{\rm YPr}} \right),\tag{9}$$

$$Z = C_{\rm Pr} Y_{\rm YPr} + C_{\rm Pr} Y_{\rm YMg} + C_Y Y_{\rm YPr}, \tag{10}$$

$$A_{1} = \frac{C_{Y}\lambda_{2} + Y_{YPr} + Y_{YMg}}{(\lambda_{2} - \lambda_{1})C_{Y}}T_{0}, \quad A_{2} = T_{0} - A_{1}.$$
(11)

6

Далее, варьируя $Y_{\rm YPr}$ методом наименьших квадратов для наилучшего согласования с экспериментальными кривыми для разных образцов, мы получили $R_{\rm YPr} = 1/Y_{\rm YPr} = (0.3 \div 1.3) \cdot 10^{-3} \text{ K} \cdot \text{см}^2/\text{Bt}$, что составляет величину $(0.5 \div 2.4)R_{\rm YMg}$.

Рис. 2: Экспериментальные данные и расчетная кривая охлаждения пленки для образия 606-2 при T = 82 K.

На рис. 2 приведены экспериментальные данные (T = 82 K) и кривая аппроксимации для отклика образца 606-2. Для сравнения пунктиром приведена кривая аппроксимации формулой $\exp(-t/\tau_{es})$ ($\tau_{es} = 3.4$ нс, см. табл. 1). Видно, что в начальный момент времени сплошная кривая опускается круче за счет передачи тепла защитному слою, затем их температуры сравниваются и охлаждение замедляется. С точки зрения частотной характеристики это означает, что за счет влияния защитного слоя отклик на высоких частотах возрастет, а на более низких ($\sim 1/(2\pi\tau_{\Sigma})$, где τ_{Σ} соответствует уходу фононов из пленки толщиной $d = d_Y + d_{Pr}$) – уменьшится, что в некоторых случаях может быть полезно.

Следует также отметить, что относительно высокий уровень шума в наших измерениях затрудняет выбор в пользу того или иного способа описания.

В заключение отметим, что нами определено время выбега фононов для ВТСП микроболометра с защитным слоем и его зависимость от толщин пленок. Показано, что влияние толщины защитного слоя на время выбега фононов может быть описано в терминах эффективной толщины. Впервые получена количественная оценка теп-

ЛИТЕРАТУРА

- [1] P. Probst, A. Scheuring, M. Hofherr, et al., Appl. Phys. Lett. 98, 043504 (2011).
- [2] T. B. Samoilova, Supercond. Sci. Technol. 8, 259 (1995).
- [3] I. Vendik, O. Vendik, V. Pleskachev, et al., in International Microwave Symposium Digest IEEE MTT-S, Phoenix, 2001 (IEEE, 2001), p. 1461; https://ieeexplore.ieee.org/document/967178.
- [4] L. T. Wang, Y. Xiong, Y. H. Xiao, et al., J. Supercond. Nov. Magn. (2019); https://doi.org/10.1007/s10948-019-5070-z.
- [5] E. V. Pechen, A. V. Varlashkin, S. I. Krasnosvobodtsev, et al., Appl. Phys. Lett. 66, 2292 (1995).
- [6] Yu. P. Gousev, A. D. Semenov, R. S. Nebosis, et al., Supercond. Sci. Technol. 9, 779 (1996).
- [7] A. V. Sergeev, A. D. Semenov, P. Kouminov, et al., Phys. Rev. B 49, 9091 (1994).
- [8] F. M. Araujo-Moreira, P. N. Lisboa-Filho, A. J. C. Lanfredi, et al., Phys. C 341-348, 413 (2000).

Поступила в редакцию 10 октября 2018 г.

После доработки 31 мая 2019 г.

номер 7, 2019 г.

Принята к публикации 7 июня 2019 г.