УДК 533.951

НЕКОТОРЫЕ ОСОБЕННОСТИ ТОКОВЫХ СЛОЕВ, ФОРМИРУЕМЫХ В ПЛАЗМЕ С ИОНАМИ РАЗЛИЧНОЙ МАССЫ

А. Г. Франк, С. Н. Сатунин

Особенности структуры токовых слоев, формировавшихся в лабораторных экспериментах в плазме с ионами различной массы, сравнивались на основе безразмерных параметров и сопоставлялись с величинами токов Холла.

Ключевые слова: токовый слой, токи Холла.

1. Токовые слои, которые развиваются в естественных условиях (в том числе в магнитосфере Земли), а также в лабораторных экспериментах, отличаются большим разнообразием структуры и динамики [1–3]. При этом между лабораторными и магнитосферными слоями существуют колоссальные различия в пространственных масштабах, величинах магнитных полей, электрических токов, концентрации плазмы и др., вплоть до 7–16 порядков величины [4–9]. Характеристики лабораторных и магнитосферных токовых слоев сравнивались как на качественном уровне, так и количественно на основе безразмерных параметров, см., напр., [9]. Это позволило сделать далеко неочевидный вывод о фундаментальном сходстве токовых слоев, что открывает возможности для использования результатов лабораторных экспериментов для анализа и моделирования космофизических явлений.

В настоящей работе структура лабораторных токовых слоев, формировавшихся в плазме с ионами различной массы, сравнивалась на основе безразмерных параметров и сопоставлялась с относительным вкладом токов Холла. Плазма создавалась в одном из благородных газов: He, Ar, Kr или Xe, что позволило изменять массу ионов в довольно широких пределах. Ранее было показано, что изменение массы ионов (от He к Ar) может приводить к изменениям относительной толщины слоя [10] и роли эффекта Холла [11].

2. Токовые слои формировались в установке TC-3D (ИОФ РАН), рис. 1, в замагниченой плазме, при возбуждении тока J_z вдоль нулевой линии 2D магнитного поля $\mathbf{B} = \{h \cdot y; h \cdot x; 0\}$, где h – градиент поля в плоскости (x, y), а нулевая линия – ось

ИОФ РАН, 119991 Россия, Москва, ул. Вавилова, 38; e-mail: annfrank@fpl.gpi.ru.

0z, см. [7, 9] и цитированную там литературу. Кварцевая вакуумная камера диаметром 18 см, длиной 100 см, предварительно откачанная, заполняется одним из газов, и с помощью Θ -разряда в магнитном поле создается начальная плазма с концентрацией $N_e^0 \approx 5 \cdot 10^{14} - 10^{16}$ см⁻³. При возбуждении в плазме тока J_z (амплитуда ≈ 46 –50 кA, длительность полупериода T/2 = 6 мкс) происходит формирование токового слоя.

Структура магнитных полей и токов плазмы исследовалась с помощью системы магнитных зондов, которые перемещались либо вдоль поверхности слоя (линия AA', y = 0.8 см), либо поперек слоя, на двух различных расстояниях от нулевой линии (BB', x = -0.8 см, и CC', x = -5 см), см. рис. 1.

Рис. 1: Поперечное сечение экспериментальной установки TC-3D: 1 – проводники с токами для возбуждения 2D (поперечного) магнитного поля (1), силовые линии которого показаны штриховыми линиями со стрелками; 2 – катушки для возбуждения продольного магнитного поля; 3 – вакуумная камера; 4 – система витков Θ -разряда для создания начальной плазмы; 5 – токовый слой. AA', BB', CC' – линии, вдоль которых перемещались магнитные зонды.

Регистрировались изменения во времени трех взаимно-перпендикулярных компонент магнитного поля, и затем на основании этих измерений рассчитывались распределения электрических токов в плазме. 3. Распределения основного тока $j_z(y)$ в центральной области (x = -0.8 см) токовых слоев, сформированных в плазме с различной массой ионов, представлены на рис. 2(a) в "физических величинах" (плотности тока в кА/см², расстояния в см). Каждое распределение соответствует моменту времени, когда плотность тока j_z достигала максимального значения. Из сравнения токовых слоев, сформированных в Ar, Kr и He, т.е. при изменении массы ионов в ≈ 20 раз, видно, что распределения на рис. 2(a) мало отличаются друг от друга: амплитуды токов $j_z^{max} \approx 3$ кА/см², а поперечные размеры на уровне $0.1 \cdot j_z^{max}$ составляли $2\delta y_{0.1} \approx 2 - 2.5$ см.

Вместе с тем, характеристики плазмы токовых слоев, формировавшихся в различных условиях, существенно различались, что диктует необходимость проводить количественное сопоставление распределений тока на основе безразмерных параметров. Для нормировки поперечных размеров токовых слоев, как и в работах [10, 11], использовалась ионная инерционная длина d_i , а для нормировки плотности тока – характерная плотность тока j^0 , которая зависит от тепловой скорости ионов. Здесь

$$d_i = c/\Omega_{0i}, \ \Omega_{0i} = (4\pi \cdot N_i \cdot e^2 \cdot Z_i^2/M_i)^{1/2}, \ j^0 = e \cdot N_e \cdot (2T_i/M_i)^{1/2}.$$

Значения d_i и j_0 вычислялись для конкретных экспериментальных условий на основе данных о параметрах плазмы N_e, T_i, Z_i и об их изменениях во времени и пространстве. Эти данные были получены методами голографической интерферометрии и спектроскопии.

В результате нормировки распределений, показанных на рис. 2(а), получены распределения тока в безразмерных величинах, рис. 2(б), откуда видно, что при развитии слоев в Ar и Kr распределения тока значительно отличаются от распределений в He. В Ar и Kr безразмерные полутолщины слоев порядка единицы ($\delta y/d_i$) ≈ 1 , а безразмерная плотность тока больше единицы (j_z/j^0) $\approx (1.5 - 2.5)$, тогда как в He, наоборот, безразмерная полутолщина значительно превышала единицу ($\delta y/d_i$) ≈ 5 , а безразмерная плотность тока существенно меньше единицы (j_z/j^0) ≈ 0.17 . Отсюда следует, что в центральной области токовые слои, сформированные в Ar и Kr, представляют собой "тонкие" субионные слои, тогда как в He развиваются "толстые" слои.

4. Известно, что в токовых слоях, наряду с основным (продольным) током j_z , могут возникать поперечные токи в плоскости (x, y) [12–19]. В 2D магнитных конфигурациях с нулевой линией поперечные токи обусловлены эффектом Холла и создают продольную B_z -компоненту магнитного поля, измеряя которую, можно определить структуру и величину токов Холла, см., напр., [18].

Рис. 2: Распределения плотности тока $j_z(y)$ в центральной области (x = -0.8 см) токовых слоев, формируемых в Ar, Kr и He, в моменты времени t^{\max} , когда плотности тока j_z достигали максимальных значений. Ar: p = 28 мTopp, h = 0.5 кГс/см, $t^{\max} =$ 2.74 мкс; Kr: p = 36 мTopp, h = 0.57 кГс/см, $t^{\max} = 3.88$ мкс; He: p = 320 мTopp, h = 0.5 кГс/см, $t^{\max} = 2.40$ мкс. (a) в физических единицах, (b) в нормированных единицах.

На рис. 3(а) представлены распределения в "физических единицах" плотности основного тока $j_z(y)$ и токов Холла $j_x(y)$ в сечении x = -5 см при формировании токовых слоев в Ar, He, Kr и Xe. Моменты времени t_H^{max} соответствуют максимальным амплитудам токов Холла. Видно, что амплитуды токов j_z составляют $\approx 1 - 1.8$ kA/cm², т.е. они в 2–3 раза меньше, чем в центральной области, а поперечные размеры слоев в 2–3 раза больше. Это отражает общую тенденцию утолщения токовых слоев и уменьшения плотности тока при удалении в x направлении от центра слоя к его боковым краям.

Как видно из рис. 3(а), в пределах токового слоя, где сосредоточен ток j_z , протекают токи Холла j_x противоположных направлений. В окрестности средней плоскости (y = 0) токи Холла j_x направлены из периферийных областей слоя ($|x| \gg 0$) к нулевой линии (x = 0), а на расстояниях $|y| \ge 1$ см от средней плоскости – от нулевой линии к

Рис. 3: Распределения плотности тока $j_z(y)$ и токов Холла $j_x(y)$ в периферийной области (x = -5 см) токовых слоев, формируемых в Ar, Kr, He и Xe в моменты времени t_H^{max} , когда плотности токов Холла достигали максимальных значений. Ar: $p = 28 \text{ мТорр}, h = 0.5 \text{ кГс/см}, t_H^{\text{max}} \approx 1.8 \text{ мкс}; Kr: p = 36 \text{ мТорр}, h = 0.57 \text{ кГс/см}, t_H^{\text{max}} \approx 2.52 \text{ мкс}; He: p = 320 \text{ мТорр}, h = 0.5 \text{ кГс/см}, t_H^{\text{max}} \approx 2.12 \text{ мкс}; Xe: p \approx 30 \text{ мТорр}, h = 0.57 \text{ кГс/см}, t_H^{\text{max}} \approx 2.7 \text{ мкс}.$ (a) в физических единицах, (б) в нормированных единицах.

периферии. Для всех распределений на рис. 3(a) размеры приосевых областей с током Холла одного направления составляют $2\delta y^{(+)} \approx 2$ см.

Распределения токов в безразмерных величинах, рис. 3(б), получены при нормировке распределений, приведенных на рис. 3(а). Поперечные размеры токовых слоев в Ar, Kr, Xe составили $(\delta y_{0.1}/d_i) \approx 1.5 - 2; (\delta y^{(+)}/d_i) < 1$, а амплитуды основного тока и тока Холла в Ar и Kr, соответственно: $(j_z^{\max}/j^0) > 1; (j_x^{\max}/j^0) \approx 1$. Таким образом, в плазме с большой массой ионов формируются "тонкие" субионные токовые слои как в центральной области, так и вдали от нее. В Не безразмерные толщины токовых слоев в несколько раз превышают единицу: $(\delta y_{0.1}/d_i) \approx 8; (\delta y^{(+)}/d_i) \approx 4$, а амплитуды основного тока и тока и тока Холла – существенно меньше единицы: $(j_z^{\max}/j^0) \approx 0.2; (j_x^{\max}/j^0) \approx 0.07$. Таким образом, токовые слои в He – это "толстые" слои и в центральной области слоя, и вдали от нее.

Относительный вклад токов Холла можно оценить, сравнивая амплитуды токов Холла и продольного тока в слое, рис. 3(a), 3(б). Для токовых слоев в Ar и Kr отношение $j_x^{\text{max}}/j_z^{\text{max}} \approx 0.54 - 0.63$, а для слоя в He это отношение ≈ 0.3 . Отсюда следует, что в тонких токовых слоях, формируемых в Ar и Kr, относительный вклад токов Холла превышает вклад токов Холла в толстых токовых слоях, развивающихся в He, что согласуется с наблюдениями в токовом слое хвостовой области магнитосферы Земли [11, 20].

Выводы. Исследована структура токовых слоев при их формировании в плазме с ионами различной массы: He, Ar, Kr, Xe (A = 4 - 131). Показано, что в лабораторных условиях распределения тока в "физических величинах" практически не зависят от массы ионов плазмы, в которой развивается токовый слой.

Сравнение характеристик токовых слоев, формируемых в различных условиях, проведено на основе безразмерных величин. Для нормировки использовались: ионная инерционная длина и характерная плотность тока, зависящая от тепловой скорости ионов. Установлено, что в безразмерных величинах распределения тока существенно зависят от массы ионов плазмы, что позволяет создавать в эксперименте как относительно "тонкие", так и "толстые" токовые слои. В Ar, Kr и Xe относительная толщина слоев $\approx 1-2$, т.е. формируются тонкие токовые слои, тогда как в Не относительная толщина слоя $\approx 5 - 10$ – это толстый токовый слой.

Показано, что относительный вклад токов Холла в тонких токовых слоях превышает вклад токов Холла в толстых слоях, что согласуется с наблюдениями в токовом слое хвостовой области магнитосферы Земли. Работа выполнена в рамках Государственного задания № 0024-2018-0045.

ЛИТЕРАТУРА

- [1] S. I. Syrovatskii, Annu. Rev. Astron. Astrophys **19**, 163 (1981).
- [2] D. Biscamp, *Magnetic Reconnection in Plasmas* (Cambridge, Cambridge Univ. Press, 2000).
- [3] Э. Прист, Т. Форбс, Магнитное пересоединение (М., Физматлит, 2005), с. 592.
- [4] Плазменная гелиогеофизика. Под ред. Л. М. Зеленого, И. С. Веселовского, 1, 2 (М., Физматлит, 2008).
- [5] M. E. Koepke, Reviews of Geophysics **46**, 1 (2008).
- [6] E. G. Zweibel and M. Yamada, Annu. Rev. Astron. Astrophys. 47, 291 (2009).
- [7] А. Г. Франк, УФН **180**(9), 982 (2010).
- [8] M. Yamada, R. Kurlsrud, and H. Ji, Rev. Modern Phys. 82, 603 (2010).
- [9] А. Г. Франк, А. В. Артемьев, Л. М. Зеленый, ЖЭТФ 150, 807 (2016).
- [10] А. Г. Франк, Г. В. Островская, Е. В. Юшков и др., Космич. исслед. 55, 48 (2017).
- [11] Е. В. Юшков, А. Г. Франк, А. В. Артемьев и др., Физика плазмы 44, 1126 (2018).
- [12] T. Terasawa, Geophys. Res. Lett. 10, 475 (1983).
- [13] Y. Yagi and N. Kawashima, Japan J. Appl. Phys. 24, L259 (1985).
- [14] A. Bhattacharjee, Annu. Rev. Astron. Astrophys. 42, 365 (2001).
- [15] J. D. Huba and L. I. Rudakov, Phys. Rev. Lett. 93, 175003 (2004).
- [16] D. Uzdensky and R. Kurlsrud, Phys. Plasmas 13, 062305 (2006).
- [17] M. Brown, C. D. Cothram, and J. Fung, Phys. Plasmas 13, 056503 (2006).
- [18] A. G. Frank, S. G. Bugrov, and V. S. Markov, Phys. Plasmas 15, 092102(1-10) (2008).
- [19] А. Г. Франк, С. Н. Сатунин, Физика плазмы 44, 144 (2018).
- [20] I. Y. Vasko, A. V. Artemyev, A. A. Petrukovich, et al., Annales Geophysicae 32, 133 (2014).

Поступила в редакцию 10 июля 2019 г.

После доработки 10 июля 2019 г.

Принята к публикации 9 января 2020 г.