## АБЕРРАЦИОННАЯ КАРТИНА ПРИ САМОВОЗДЕЙСТВИИ ТЕМ<sub>01</sub> МОДЫ СВЕТОВОГО ИЗЛУЧЕНИЯ В НЕМАТИЧЕСКИХ ЖИДКИХ КРИСТАЛЛАХ

И. А. Будаговский<sup>1</sup>, А. С. Золотько<sup>1</sup>, А. А. Кузнецов<sup>1</sup>, М. П. Смаев<sup>1,2</sup>, С. А. Швецов<sup>1,3</sup>, А. Ю. Бобровский<sup>3</sup>, Н. И. Бойко<sup>3</sup>, В. П. Шибаев<sup>3</sup>

Исследованы свойства аберрационной картины, возникающей при самовоздействии моды светового излучения  $TEM_{01}$  в жидкокристаллических системах. Установлено, что интерференция световых лучей, соответствующих двум пикам интенсивности и нелинейного набега фазы, приводит к формированию в зоне Фраунгофера системы полос с угловым периодом, определяемым расстоянием между пиками. Эти полосы заполняют всю аберрационную картину (систему концентрических колец) или только ее часть, в зависимости от вида профиля светоиндуцированного набега фазы. Показаны возможности использования свойств аберрационной картины в  $TEM_{01}$  моде для исследования светоиндуцированной переориентации директора нематических жидких кристаллов.

Ключевые слова: аберрационная картина, нематические жидкие кристаллы, жидкокристаллические полимеры, самофокусировка, самодефокусировка, самовоздействие света, оптическая нелинейность.

Введение. При прохождении гауссова светового пучка через среды с кубичной нелинейностью наблюдается формирование аберрационной картины в виде системы концентрических колец. Такая картина возникает при самофокусировке [1] и самодефокусировке [2] света в случае достаточно большого нелинейного фазового набега в средах с

 $<sup>^1</sup>$ ФИАН, 119991 Россия, Москва, Ленинский пр-т, 53; e-mail: budagovskyia@mail.ru.

<sup>&</sup>lt;sup>2</sup> РХТУ им. Д.И. Менделеева, 125047 Россия, Москва, Миусская пл., 9.

 $<sup>^3</sup>$  МГУ им. М. В. Ломоносова, 11999 1 Россия, Москва, Ленинские горы, 1.

тепловой нелинейностью. Ярко выраженные эффекты аберрационной самофокусировки и самодефокусировки наблюдаются в низкомолекулярных нематических жидких кристаллах (НЖК) [3–7] и нематических жидкокристаллических полимерах (НЖКП) [8, 9] благодаря их большой оптической анизотропии  $\Delta n \sim 0.2$ . Поскольку число аберрационных колец простым образом связано с нелинейным набегом фазы, то эффект аберрационного самовоздействия может быть использован для измерения ориентационных нелинейностей. Например, в [7] было показано, что с его помощью можно измерять ориентационную нелинейность даже в присутствии сильных тепловых эффектов. В [10] обсуждалось применение аберрационного самовоздействия для измерения скоростей потоков. Наблюдение динамики развития аберрационной картины позволяет определять материальные параметры НЖК [11] и регистрировать малые изменения частоты световой волны [12]. В [13] при двукратном (прямом и обратном) прохождении гауссова пучка через НЖК наблюдалась генерация в аберрационной картине катастрофы гиперболическая омбилика. Аналогичный оптический эффект возникал и при однократном прохождении гауссова пучка через НЖК с фоторефрактивной нелинейностью [14].

К настоящему времени исследования аберрационного самовоздействия ограничивались аксиально симметричной модой TEM<sub>00</sub>. В [15] при исследовании взаимодействия света с НЖКП в аберрационной картине, наряду с системой концентрических колец, была зарегистрирована система интерференционных полос. Однако этот эффект не был подробно изучен. В настоящей работе экспериментально исследовано взаимодействие моды светового излучения TEM<sub>01</sub> с низкомолекулярными и полимерными нематическими жидкокристаллическими системами.

## Эксперимент.

<u>Образцы.</u> В качестве экспериментальных образцов использовали несколько типов легированных красителем НЖК и НЖКП: (1) НЖК ЖКМ-1277 с добавкой азокрасителя КД-1 (0.05% по весу), толщиной 100 мкм, гомеотропной ориентации; (2) НЖК ЖКМ-1277 с полимерной добавкой РСАВО-3А (0.2% по весу), толщиной 100 мкм, планарной ориентации и (3) фракционированный полиакрилатный полимер РАА (степень полимеризации 22) с боковыми фрагментами, с добавкой 0.05% КД-1, толщиной 50 мкм, планарной ориентации.

В зависимости от угла падения света на образец с КД-1, в нем проявляются и положительная, и отрицательная нелинейности [16], что позволяет в рамках одного образца рассмотреть оба типа нелинейности. Для образца с добавкой полимера PCABO характерна только отрицательная нелинейность, но величина возможного нелинейного набега фазы значительно выше, чем для образца с КД-1. Наконец, последний образец уникален тем, что он обладает нематической фазой при температуре ниже 123 °C, а при комнатной температуре переходит в стеклообразное состояние. Это позволяет записывать индуцированные в нематической фазе деформации директора посредством простого охлаждения, и далее изучать их методами микроскопии.



Рис. 1: (a) Схема экспериментальной установки (вид сверху): ДРФ – двойной ромб Френеля, НФ – нейтральный фильтр, П – поляризатор. (б) Распределение интенсивности и нормализованный профиль в вертикальном сечении для пучка TEM<sub>01</sub>, полученные с помощью CMOS-камеры.

<u>Экспериментальная установка.</u> Излучение (532 нм) твердотельного лазера проходило через двойной ромб Френеля и фокусировалось на ячейке с НЖК (или НЖКП) посредством линзы с фокусным расстоянием 38 мм (рис. 1(а)). Аберрационная картина наблюдалась на экране в дальней зоне. Ячейка могла вращаться вокруг вертикальной оси. Поляризация излучения, падающего на ячейку, и директор НЖК были ориентированы в горизонтальной плоскости.

Для формирования пучка, аналогичного моде  $\text{TEM}_{01}$ , после двойного ромба дополнительно устанавливали *S*-пластину, которая трансформировала линейнополяризованный гауссов пучок в тангенциально-поляризованный. После горизонтально ориентированного поляризатора распределение интенсивности пучка соответствовало моде  $\text{TEM}_{01}$  (рис. 1(б)).

Нагрев ячейки с жидкокристаллическим полимером (образец 3) осуществляли посредством прозрачного ITO-нагревателя. Результаты и обсуждение.

<u>Образец 1 (ЖКМ-1277+КД-1)</u>. В гомеотропно ориентированном образце с примесью КД-1 проявляется знакопеременная нелинейность.



Рис. 2: Аберрационные картины в дальней зоне, наблюдаемые при освещении (а, в) гауссовым световым пучком и (б, г) пучком  $TEM_{01}$  в случае (а, б) положительной ( $\alpha = 35^{\circ}$ ) и (в, г) отрицательной нелинейности в образце 1 (1277+КД1). Мощность пучка  $P = (a) \ 0.5$ ; (b) 1; (b) 7.5; (г) 13 мВт. Вертикальный угловой размер картин  $\theta_v = (a) \ 0.5$ ; (b) 0.74; (в) 0.18; (г) 0.25 рад.

При угле падения света  $\alpha = 35^{\circ}$ , превышающем критический (угол  $\alpha_{\rm crit} \approx 32^{\circ}$ ), т.е. угол, при котором изменяется знак нелинейности, проявляется значительная положительная ориентационная нелинейность при мощностях света в доли мВт. Самовоздействие гауссова пучка мощностью P = 0.5 мВт приводит к развитой системе концентрических колец (рис. 2(a)). Изменение показателя преломления  $\delta n$ , оцененное по числу аберрационных колец N = 8 с помощью соотношения  $\delta n = \lambda N/L$  [9] ( $\lambda$  – длина световой волны, L – толщина образца), составляет  $\delta n \approx 0.04$ . Аберрационная картина при освещении пучком TEM<sub>01</sub> значительно сложнее (рис. 2(б)). Она представляет собой наложение картин, формируемых при светоиндуцированной деформации директора под действием верхней и нижней частей светового пучка. В центре картины наблюдается дополнительная модуляция интенсивности в виде горизонтальных полос. Шаг полос составил 0.034 рад.

При угле падения  $\alpha = 30^{\circ}$  (меньше критического) наблюдается отрицательная нелинейность. Расходимость аберрационной картины в этом случае меньше из-за малого резерва угла поворота директора. Аберрационная картина при освещении гауссовым пучком (рис. 2(в)) проявляется при мощностях света порядка нескольких мВт, при этом значительный вклад вносит тепловая нелинейность. Освещение пучком TEM<sub>01</sub> приводит, как и в случае положительной нелинейности, к аберрационной картине, центр которой промодулирован горизонтальными полосами (рис. 2(г)). Расстояние между горизонтальными полосами совпадает с шагом полос для случая положительной нелинейности (0.034 рад).

Отметим, что в случае отрицательной ориентационной нелинейности в гомеотропном НЖК возможный угол поворота директора и соответствующий набег фазы малы, а при используемых мощностях света проявляется значительный вклад тепловой положительной нелинейности, нивелирующий ориентационный. Поэтому формирование картины при отрицательной нелинейности НЖК (самодефокусировка) удобнее исследовать в планарном образце с полимерной добавкой РСАВО.



Рис. 3: Аберрационные картины в дальней зоне, наблюдаемые при освещении пучком  $TEM_{01}$  в образце 2 (1277+PCABO) при разных положениях ячейки относительно фокуса линзы: (a, б) в фокусе, (в) на расстоянии 2 мм от фокуса. Мощность пучка P =(a) 10; (б) 2.5; (в) 13 мВт. Вертикальный угловой размер картин  $\theta_v =$  (a) 1.4; (б) 0.25; (в) 0.63 рад.

<u>Образец 2 (ЖКМ-1277+РСАВО).</u> В данном образце проявляется только отрицательная нелинейность. Воздействие наклонно ( $\alpha = 30^{\circ}$ ) падающего пучка TEM<sub>01</sub> мощностью P = 10 мВт также формирует характерную картину с горизонтальными полосами в центральной части (рис. 3(а)), расстояние между которыми ~0.07 рад. При уменьшении мощности шаг полос несколько уменьшается, и составляет 0.06 рад для P = 5 мВт и 0.05 рад для P = 2.5 мВт (рис. 3(б)). Схожее поведение наблюдается и при развитии картины во времени после включения излучения: шаг полос увеличивался по мере развития картины.

При увеличении размера пучка, что достигалось смещением ячейки из фокуса линзы на 2 мм, шаг полос уменьшался до 0.01 рад (рис. 3(в)).

Как видно из свойств аберрационной картины, воздействие пучка TEM<sub>01</sub> приводит к формированию достаточно сложной интерференционной картины, обусловленной наложением двух компонент пучка, формирующих две близкорасположенные области деформации директора.

<u>Образец 3 (РАА + 0.05%КД-1)</u>. Как и для предыдущего образца, для нематического жидкокристаллического полимера с примесью КД-1 наблюдается только отрицательная нелинейность. При самовоздействии пучка  $\text{TEM}_{01}$  формируется аналогичная аберрационная картина, промодулированная горизонтальными полосами с шагом 3 мм (при расстоянии до экрана R = 40 см). После охлаждения образца до комнатной температуры картина несколько увеличивается, что обусловлено ростом  $\delta n$  всей полимерной матрицы (рис. 4(а)). Микрофотография записанной фазовой структуры в скрещенных поляризаторах (рис. 4(б)) позволяет восстановить профиль набега фазы (рис. 4(в)) и на его основе (рис. 4(г)) провести численное моделирование аберрационной картины (рис. 4(д)). Расчет интеграла Кирхгофа дает расстояние между полосами равное 2.9 мм.

Рассмотрим формирование аберрационной картины при освещении нелинейной среды модой  $\text{TEM}_{01}$ . Два пика интенсивности I(z) в световом пучке (рис. 5(a)) приводят к переориентации директора и возникновению нелинейного набега фазы S(z). В результате происходит деформация волнового фронта. На рис. 5 показан профиль волнового фронта, соответствующий случаю самодефокусировки.

Проанализируем картину, образуемую правым пиком волнового фронта. Луч 1 (рис. 5) с максимальным отклонением  $\theta_m = (2\pi/\lambda)(\partial |S|/\partial z)_{\text{max}}$  соответствует внешнему кольцу аберрационной картины. Для любого значения отклонения  $\theta < \theta_m$  существуют два луча 2 и 3, интерференция которых, обусловленная разностью хода, и приводит к кольцевой структуре [1]. Аберрационная картина, связанная с одним пиком волнового фронта, образуется в случае гауссова пучка (моды TEM<sub>00</sub>) (см. рис. 2(a)). Для моды TEM<sub>01</sub> дополнительно возникает интерференция с отклоненными лучами, обусловленными вторым пиком (рис. 5(б), лучи 1', 2', 3'). Разность фаз между лучами, отклоненными на одинаковый угол (например, 1 и 1' на рис. 5(б), пропорциональная длине отрезка A'E), связана с расстоянием между пиками *d* и углом отклонения луча  $\theta$ 

$$S_1 = (2\pi/\lambda)d\sin\theta. \tag{1}$$

Интерференция лучей от разных пиков приводит к системе полос, наблюдаемых со всеми исследованными образцами. Угловое расстояние  $\delta\theta$  между полосами, как следует из (1)

$$\delta\theta = \lambda/d. \tag{2}$$



Рис. 4: (a) Аберрационная картина в дальней зоне после охлаждения образца 3 (PAA+KД-1); (б) микрофотография записанной фазовой структуры; (в) профили фазы, восстановленные по горизонтальному (синяя кривая) и вертикальному (красная кривая) сечениям записанной фазовой структуры; (г, е) смоделированные профили фазы, используемые для расчета интеграла Кирхгофа; (д) рассчитанная аберрационная картина.



Рис. 5: (a) Профиль интенсивности пучка в вертикальном сечении; (б) профиль фазового набега в случае локального приближения повторяет профиль интенсивности; (в) профиль фазового набега при заметном влиянии поперечных упругих сил.

Для картины на рис. 4(б) расстояние между пиками d = 72 мкм, откуда получаем  $\delta\theta = 7.4 \cdot 10^{-3}$  или шаг полос  $D = \delta\theta \cdot R = 3$  мм при расстоянии до экрана R = 40 см. Как видно, расстояние между пиками достаточно точно определяет шаг полос, что позволяет по расстоянию между полосами оценивать масштаб индуцируемой на кристалл картины.

Формула (1) справедлива для двух симметричных пиков. В рассматриваемом случае моды  $TEM_{01}$  это, строго говоря, не имеет места по двум причинам. Во-первых, для этой моды профили пиков интенсивности не являются симметричными. Во вторых, к искажению пиков приводит нелокальность нелинейнооптического отклика, характерная для жидких кристаллов (рис. 5(в)). Асимметрия пиков может приводить к тому, что интерференционные полосы заполняют только часть аберрационной картины, а также к тому, что величина, определенная из эксперимента по формуле (2), будет иметь значение, несколько отличное от расстояния между максимума интенсивности пучка.



Рис. 6: (а) Микрофотография фазовой структуры, сформированной узким (w = 7 мкм) пучком  $TEM_{01}$ . (б) Аберрационная картина в дальней зоне после охлаждения НЖКП; угловое расстояние между полосами  $\delta\theta = 0.05$ .

Асимметрия пиков в распределении фазы особенно заметна для узких пучков, значительно меньших толщины кристалла. В этом случае поперечные упругие силы сглаживают профиль деформации директора, и провал интенсивности в центре пучка почти не разрешается в профиле фазы (рис. 6(а)). Лучи, проходящие через "долину" в центре деформированного участка НЖКП, имеют малый наклон, поэтому полосы проявляются только в центральной части аберрационной картины (рис. 6(б)).

Заключение. Аберрационное самовоздействие пучка TEM<sub>01</sub> в НЖК с различными типами нелинейности приводит к формированию специфической интерференционной картины, промодулированной горизонтальными полосами. Шаг и расположение полос на картине позволяют установить особенности деформации поля директора, контролировать размер облучаемой области и оценить степень нелокальности нелинейного отклика.

Работа поддержана Российским Фондом Фундаментальных Исследований (проекты № 18-02-00986-а и № 19-03-00337-а), а также Российским Научным Фондом (проект № 19-13-00029; синтез и характеризация полимеров; А.Б.; Н.Б.; В.Ш.)

## ЛИТЕРАТУРА

- F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P.L. Kelley, Appl. Phys. Lett. 16, 362 (1970).
- [2] S. A. Akhmanov, D. P. Krindach, A. V. Migulin, A. P. Sukhorukov, and R. V. Khokhlov, EEE J. Quant Electronics QE-4, 568 (1968).

- [3] А. С. Золотько, В. Ф. Китаева, Н. Кроо, Н. Н. Соболев, Л. Чиллаг, Письма в ЖЭТФ 32, 170 (1980).
- [4] S. D. Durbin, S. M. Arakelian, Y. R. Shen, Opt. Lett. 6, 411 (1981).
- [5] E. Santamato and Y. R. Shen, Opt. Lett. 9, 564 (1984).
- [6] A. S. Zolot'ko, I. A. Budagovsky, V. N. Ochkin, et al., Mol. Cryst. Liq. Cryst. 488, 265 (2008).
- [7] I. A. Budagovsky, A. S. Zolot'ko, V. F. Kitaeva, M. P. Smayev, Mol. Cryst. Liq. Cryst. 453, 71 (2006).
- [8] I. A. Budagovsky, V. N. Ochkin, S. A. Shvetsov, et al., Phys. Rev. E 95, 052705 (2017).
- [9] I. Budagovsky, A. Kuznetsov, S. Shvetsov, et al., J. Mol. Liq. 276, 275 (2019).
- [10] N. V. Tabiryan, S. R. Nersisyan, M. Warenghem, Phys. Rev. Lett. 77, 3355 (1996); J. Appl. Phys. 83, 1 (1998).
- [11] А. С. Золотько, В. Ф. Китаева, В. А. Куюмчян и др., Письма в ЖЭТФ 36, 66 (1982).
- [12] G. Cipparrone, D. Duca, C. Umeton, and N. V. Tabiryan, Phys. Rev. Lett. 71, 3955 (1993).
- [13] N. V. Tabiryan, B. Ya. Zel'dovich, M. Kreuzer, T. Vogeler, and T. Tschudi, J. Opt. Soc. Am. B 13, 1426 (1996).
- [14] И. А. Будаговский, А. С. Золотько, М. П. Смаев, М. И. Барник, ЖЭТФ 138, 150 (2010).
- [15] I. Budagovsky, A. Kuznetsov, S. Shvetsov, et al., Polymers 12, 356 (2020).
- [16] М. И. Барник, А. С. Золотько, В. Г. Румянцев, Д. Б. Терсков, Кристаллография 40, 746 (1995).
  - Поступила в редакцию 11 января 2020 г.
    - После доработки 25 марта 2020 г.

Принята к публикации 26 марта 2020 г.