УДК 544.174.2

РАСЧЕТ КРИВЫХ ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ СТОЛКНОВИТЕЛЬНОГО КОМПЛЕКСА Ar*-He

А.А. Першин^{1,2}, П.А. Михеев¹, М.Ч. Хэвен³, А.М. Мебель⁴

Зависимости потенциальных энергий E(R) для 48 состояний столкновительного комплекса Ar^* -Не от межатомного расстояния R получены с использованием многоконфигурационных методов квантовой механики с учетом спин-орбитального взаимодействия с активным пространством из 6 электронов на 7 орбиталях. Значения $E(R \ge 9 \text{ Å})$ хорошо, с точностью 10–200 см⁻¹ (0.05 – 0.3%), совпадают с энергиями состояний атома Ar.

Ключевые слова: кривая потенциальной энергии, аргон, гелий, столкновительный комплекс, лазер.

В [1] предложено использовать метастабильные атомы тяжёлых инертных газов (ИГ*) в атмосфере гелия для создания нового вида лазеров с оптической накачкой (ЛОНИГ), обладающих высокими удельными характеристиками, которые позволят создавать мощные и компактные лазеры с высоким качеством излучения. Важным требованием для ЛОНИГ является оптимальное перекрытие спектров накачки диодных лазеров и поглощения перехода $1s_5 \rightarrow 2p_9$ ИГ* [2]. Положение и ширина линии поглощения определяются в том числе видом кривых потенциальной энергии (КПЭ) для столкновительной пары ИГ*-Не. В [3, 4] определены коэффициенты столкновительного уширения и сдвига для перехода $1s_5 \rightarrow 2p_9$ в аргоне и криптоне с гелием с использованием диодно-лазерной спектроскопии. В недавних работах [5, 6] с использованием высокоуровневых *ab initio* квантово-механических расчетов получены зависимости по-

¹ Самарский филиал Физического института им. П. Н. Лебедева РАН, 443011 Россия, Самара, ул. Ново-Садовая, 221; e-mail: anchizh93@gmail.com.

 $^{^2}$ Самарский национальный исследовательский университет им. С. П. Королева, 443086 Россия, Самара, Московское шоссе, 34.

³ Университет Эмор, Атланта, 201 Даумен Драйв 30322, Джорджия, США.

 $^{^4}$ Международный Университет Флориды, 11200 CB 8
я улица, 33 199, Майами, США.

тенциальных энергий E(R) от межатомного расстояния R для состояний столкновительного комплекса Ar*-He. В [5] эти зависимости использовались в расчетах коэффициентов столкновительного уширения и сдвига для рабочих переходов ЛОНИГ, причем результаты с КПЭ из [6] дали неудовлетворительное согласие с экспериментом, тогда как из [5] согласовались значительно лучше. Расчётные значения E(R) для состояний sи p комплекса Ar*-He при $R \to \infty$ также существенно отличались от соответствующих энергий термов изолированного атома Ar [7]. Целью данной работы является уточнение КПЭ для s и p состояний столкновительного комплекса Ar*-He и сравнение значений E(R) для $R \ge 10$ Å с энергиями соответствующих состояний для изолированного атома Ar.

Расчет коэффициентов столкновительного уширения и сдвига спектральных линий при столкновении аргона с гелием осуществлялся методом, основанным на учете суммарного сдвига фазы при рассеянии, сечений рассеяния и сдвига, частоты перехода. Полное описание расчета коэффициентов уширения и сдвига для невырожденных переходов представлено в [5, 8]. В расчетах фазовых сдвигов привлекаются КПЭ, которые могут быть найдены многоконфигурационными методами квантовой химии с учетом спин-орбитального взаимодействия [5, 6]. В данной работе КПЭ и соответствующие волновые функции находятся методом конфигурационного взаимодействия (MRCI), где набор базисных функций составлен из волновых функций орбиталей каждого из атомов в основных состояниях и 4s и 4p орбиталей атома Ar. При построении волновых функций учитываются возбуждения только внешних 6 электронов атома аргона с занятых 3p орбиталей на вакантные орбитали 4s и 4p. В первом приближении значения E(R) и волновые функции определялись методом Хартри–Фока. Дальнейшие их уточнения производилось последовательно методами самосогласованного поля с активным пространством из 6 электронов на 7 орбиталях и методом конфигурационного взаимодействия с однократными и двухкратными возбуждениями. На финальном этапе вычислялись собственные значения и волновые функции матрицы спин-орбитального взаимодействия. Расчетные значения E(R) соотносились к энергии состояния $1s_5$ атома аргона 93143.8 см⁻¹, взятой из базы данных [7]. Все расчеты проводились с использованием программного пакета MOLPRO 2015 [9].

		~					1
T	\mathbf{a}	0	Л	И	Ц	\mathbf{a}	

Состояние	E_{∞}	E_{∞}	E_{Ar^*}	ΔE	ΔE
	[5]	данная	[7]	[5]	данная
		работа			работа
$1s_4$	93205.7	93701.7	93750.6	544.9	48.9
$1s_3$	94007.9	94472.1	94553.7	545.8	81.6
$1s_2$	94599.3	95208.8	95399.8	800.5	191
$2p_{10}$	103007.0	104086.3	104102.1	1095.1	15.8
$2p_{9}$	104369.9	105305.6	105462.8	1092.9	157.2
$2p_8$	104458.8	105461.7	105617.3	1158.4	155.6
$2p_{7}$	104928.5	105885.1	106087.3	1158.7	202.2
$2p_6$	104959.5	106017.5	106237.6	1278.0	220.1
$2p_5$	105862.6	106856.1	107054.3	1191.7	198.2
$2p_4$	105895.4	106863.1	107131.7	1236.3	268.6
$2p_{3}$	105946.9	106998.3	107289.7	1342.8	291.4
$2p_2$	106156.0	107191.0	107469.4	1313.4	278.4
$2p_1$	108535.0	108623.8	108722.6	187.6	98.8

Расчетные значения энергий E_{∞} , E_{Ar^*} и $\Delta E = E_{\infty} - E_{Ar^*}$ в единицах см⁻¹

В табл. 1 представлены значения энергий возбужденных состояний комплекса Ar^{*}-Не (E_{∞}) при $R \geq 10$ Å полученные нами, а также в работе [5], энергии возбужденных состояний изолированного атома аргона E_{Ar^*} , взятых из базы данных [7], и отклонения $\Delta E = E_{\infty} - E_{Ar^*}$. Видно, что значения E_{∞} приближаются к экспериментально измеренным значениям энергий состояний изолированного атома Ar. На рис. 1 представлены КПЭ для состояний 1s₅ и 2p₁₀ столкновительного комплекса Ar^{*}-He, полученные нами (сплошные кривые) и в работе [5] (пунктирные линии). Вновь полученные КПЭ для каждого состояния сдвинуты вверх относительно рассчитанных ранее в [5], хотя с уменьшением R кривые для одинаковых состояний сходятся. Такое поведение кривых наблюдалось для всех взятых в учет 48 состояний. Уменьшение разницы между расчетными и экспериментальными цифрами связано с сокращением количества учитываемых уровней при расчете и меньшим расстоянием между уровнями без учета спин-орбитального взаимодействия.

Таким образом, полученные нами значения энергий состояний в пределе больших межатомных расстояний ($R \ge 9$ Å) с точностью до 10–200 см⁻¹ (0.05–0.3%) совпада-

Рис. 1: Кривые потенциальной энергии для состояний $Ar(1s_5) + He \ u \ Ar(2p_{10}) + He$. Сплошные линии – результат данной работы, пунктирные – [5], Ω – проекция полного момента на ось молекулы.

ют с энергиями возбужденных состояний изолированного Ar, что свидетельствует о преимуществе выбранного расчетного метода по сравнению с [5].

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-33-90265.

ЛИТЕРАТУРА

- [1] J. Han and M. C. Heaven, Opt. Lett. **39**, 6541 (2014). DOI: 10.1364/OL.39.006541.
- [2] P. A. Mikheyev, A. K. Chernyshov, M. I. Svistun, et al., Opt. Express 27, 38759 (2019).
 DOI: 10.1364/OE.383276.
- [3] P. A. Mikheyev, A. K. Chernyshov, N. I. Ufimtsev, et al., J. Quant. Spectrosc. Radiat. Transfer 164, 1 (2015). DOI: 10.1016/j.jqsrt.2015.05.008.
- [4] A. K. Chernyshov, P. A. Mikheyev, and N. I. Ufimtsev, J. Quant. Spectrosc. Radiat. Transfer 222, 84 (2019). DOI: 10.1016/j.jqsrt.2018.10.010.
- [5] A. A. Pershin, A. R. Ghildina, A. M. Mebel, et al., J. Chem. Phys. 151, 224306 (2019).
 DOI: 10.1063/1.5133043.
- [6] A. R. Sharma and D. E. Weeks, J. Chem. Phys. 149, 194302 (2018). DOI: 10.1063/1.5049661.

- [7] https://physics.nist.gov/PhysRefData/Handbook/Tables/argontable3.htm.
- [8] W. Demtroder, Laser spectroscopy (Springer Verlag, 2008), pp. 72-82.
- H.-J. Werner et al., (2015). MOLPRO, version 2015, a package of ab initio programs. https://www.molpro.net/.

Поступила в редакцию 14 мая 2020 г.

После доработки 9 августа 2020 г.

Принята к публикации 17 августа 2020 г.

Публикуется по рекомендации XVII Всероссийского молодежного Самарского конкурса-конференции научных работ по оптике и лазерной физике (Самара).