ОСОБЕННОСТИ ПОВЕДЕНИЯ РАДИОНУКЛИДА ГАЛЛИЯ-68 В СОСТАВЕ ПРОИЗВОДНЫХ ГЛЮКОЗЫ В ОРГАНИЗМЕ ЛАБОРАТОРНЫХ ЖИВОТНЫХ

В. М. Петриев^{1,2}, В. К. Тищенко^{1,2}, Е. Д. Степченкова¹,

О.В. Федоров³, А.А. Фроня^{2,4}

Работа посвящена сравнительному изучению фармакокинетических характеристик комплексных соединений галлия-68 с аминоглюкозой (⁶⁸Ga-NODA-AГ) и тиоглюкозой (^{68}Ga -NODA- $T\Gamma$) в организме мышей BALB/c после внутривенного введения препаратов. Статистически достоверные различия в уровнях накопления активности в большинстве органов и тканей отмечалось через 5 мин после интекции препаратов. В последующие сроки эти показатели не имели статистически достоверных различий для большинства органов и тканей. Выведение активности из органов и тканей осуществлялось с высокой скоростью. Биологические и эффективные периоды полувыведения активности из органов и тканей ^{68}Ga -NODA-A Γu ^{68}Ga -NODA-T Γ для составили менее 1 ч.

Ключевые слова: галлий-68, производные глюкозы, аминоглюкоза, тиоглюкоза, биологический период полувыведения, эффективный период полувыведения.

Введение. Внедрение метода позитронной эмиссионной томографии (ПЭТ) в рутинную клиническую практику стимулировало разработку новых радиофармацевтических препаратов (РФП) для диагностики онкологических заболеваний. Тем не менее, наиболее востребованным РФП остается [¹⁸F]фтор-2-деокси-2-D-глюкоза (¹⁸F-ФДГ). Возможность ее использования обусловлена неспецифическим накоплением в опухолевых

¹ МРНЦ им. А. Ф. Цыба – филиал ФГБУ "НМИЦ радиологии" Минздрава России, 249036 Россия, Калужская область, Обнинск, ул. Королёва, 4; e-mail: petriev@mrrc.obninsk.ru.

 $^{^2}$ НИЯУ "МИФИ", 115409 Россия, Москва, Каширское ш., 31.

 $^{^3}$ АО ФАРМ-СИНТЕЗ, 111024 Россия, Москва, Кабельная 2-я улица, д. 2, стр. 46.

⁴ ФИАН, 119991 Россия, Москва, Ленинский пр-т, 53.

клетках за счет повышенного поглощения глюкозы при малигнизации [1]. Попав внутрь клетки с помощью белков-транспортеров семейства GLUT, ¹⁸F-ФДГ фосфорилируется под действием фермента гексокиназы, превращаясь в ¹⁸F-ФДГ-6-фосфат. Из-за наличия атома ¹⁸F ¹⁸F-ФДГ-6-фосфат не подвергается дальнейшим метаболическим превращениям, накапливаясь в раковых клетках и позволяя визуализировать опухоль.

Основным недостатком ¹⁸F-ФДГ является необходимость наличия циклотрона для получения ¹⁸F вблизи от ПЭТ-центра, а также другого дорогостоящего оборудования для автоматизированного синтеза ¹⁸F-ФДГ [2]. Все это в итоге приводит к росту стоимости исследования, снижая тем самым его доступность для населения.

В качестве альтернативы ¹⁸F предлагается использование генераторного радионуклида галлия-68 ($T_{1/2} = 68$ мин, $\beta^+ = 89\%$, $E_{\beta max}^+ = 1.9$ MэB) [3]. Усовершенствование генератора ⁶⁸Ge/⁶⁸Ga, позволяющего при элюировании получать ⁶⁸Ga³⁺ в ионной форме, и начало его промышленного производства стимулировало разработку новых соединений на основе ⁶⁸Ga [3–7]. Векторными молекулами, способными доставлять радиоактивную метку к опухолевым клеткам, могут стать аналоги глюкозы или ее производные. За последние два десятилетия было получено большое количество соединений на основе аналогов глюкозы, меченных радионуклидами ^{99m}Tc, ¹¹¹In, ¹⁸F, ⁶⁴Cu, и показана возможность их использования для визуализации метаболизма опухоли [8].

Целью данной работы стало сравнение фармакокинетических свойств двух новых соединений на основе аминоглюкозы и тиоглюкозы, меченных ⁶⁸Ga, в организме интактных лабораторных животных.

Материалы и методы. Приготовление меченого препарата (⁶⁸Ga-NODA-AГ) проводили путем введения хлорида галлия (⁶⁸GaCl₃) во флакон с лиофилизатом. Для этого к лиофилизату NODA-AГ добавляли 0.5 мл деионизованной воды и перемешивали до полного растворения осадка, добавляли 0.5 мл 0.2 М ацетатного буфера с pH 4.6, перемешивали и добавляли 37 МБк (1.0 мКи) ⁶⁸GaCl₃ в 0.5 мл 0.05 М HCl. Реакционную смесь перемешивали в течение 10 мин при комнатной температуре, доводили до объема 2.0 мл деионизованной водой, фильтровали через фильтр с размером пор 0.22 мкм.

Для количественного определения ⁶⁸Ga, связанного с NODA-AГ, свободного ⁶⁸Ga (не связанного с NODA-AГ) и гидролизованного ⁶⁸Ga использовали метод бумажной хроматографии. В качестве неподвижной фазы использовали Ватман-1 производства компании Sigma-Aldrich. В качестве подвижных фаз были выбраны 1.0 М раствор ацетата и 0.05%-ный раствор лимонной кислоты. При элюировании 1.0 М раствором натрия ацетата ⁶⁸Ga, связанный с NODA-AГ, двигался с фронтом элюента ($R_f = 0.85 - 0.95$),

свободный ⁶⁸Ga оставался на старте ($R_f = 0$). При элюировании 0.05%-ным раствором лимонной кислоты гидролизованный ⁶⁸Ga незначительно сдвигался со старта ($R_f = 0.05 - 0.10$), а свободный ⁶⁸Ga и связанный с NODA-AГ поднимался с фронтом элюента ($R_f = 0.85 - 0.95$).

Количественное определение гидролизованного, свободного ⁶⁸Ga и связанного с НОДА-АГ, проводили путем расчета результатов радиометрии полосок хроматографической бумаги. Радиометрию проводили с помощью автоматического гамма-счетчика "Wizard" версии 2480 фирмы "PerkinElmer/Wallac" (Финляндия).

Полученный РФП был предназначен для внутривенных инъекций. Радиохимические примеси в препарате ⁶⁸Ga-NODA-AГ не превышали 5.0%.

Синтез и анализ радиохимических примесей ⁶⁸Ga-NODA-TГ аналогичен ⁶⁸Ga-NODA-AГ. Радиохимические примеси в препарате ⁶⁸Ga-NODA-TГ не превышали 5.0%.

Изучение фармакокинетики экспериментальных образцов ⁶⁸Ga-NODA-AГ и ⁶⁸Ga-NODA-TГ проводили на интактных мышах BALB/c с массой тела 15–20 г. Животные были поделены на две равные группы по 16 мышей в каждой. Животным первой и второй групп внутривенно (в хвостовую вену) однократно вводили ⁶⁸Ga-NODA-AГ или ⁶⁸Ga-NODA-TГ соответственно в дозе 0.37 МБк в объеме 0.1 мл.

Через 5 минут, 1, 2 и 3 часа после введения по 4 животных в каждый срок подвергали эвтаназии путем декапитации (под наркозом) для получения образца крови и последующим забором внутренних органов и тканей. Образцы органов и тканей помещали в пластиковые пробирки, взвешивали на электронных весах "Sartorius" (Германия) и проводили прямую радиометрию с помощью автоматического гамма-счетчика "Wizard" версии 2480 фирмы "PerkinElmer/Wallac" (Финляндия). По полученным данным на каждый срок наблюдения рассчитывали удельную активность ⁶⁸Ga в пробах на 1 г ткани в % от введенного количества по отношению к активности образцов-стандартов.

При статистической обработке результатов радиометрии определяли показатели средних арифметических значений (M) и стандартных ошибок среднего $(\pm m)$ в программе Excel (Microsoft Corporation).

Данные о биологических периодах полувыведения ⁶⁸Ga-NODA-AГ и ⁶⁸Ga-NODA-TГ рассчитывались на основе получения экспоненциальной кривой, исходя из предположения, что выведение активности из органов и тканей выполняется по экспоненте (рис. 1).

Если угловой коэффициент A и константа скорости a максимально точно подобраны для построения кривой, то точка со значением половины введенной активности будет

Рис. 1: Временная зависимость концентрации радиофармпрепарата в органе і.

соответствовать биологическому периоду полувыведения T_{biol} . Таким образом, из формулы $A(t) = A \cdot e^{-at}$ легко выразить биологический период полувыведения T_{biol} :

$$T_{\rm biol} = rac{1}{a} \cdot \ln\left(rac{2A}{\% I D_0}
ight),$$

где T_{biol} – биологический период полувыведения препарата из органа или ткани, ч; A – угловой коэффициент при экспоненте; a – константа скорости, ч⁻¹; $\% ID_0$ – первоначальная доля от введенной активности (percent of Injected Dose) в органе или ткани, %/орган.

Данные об эффективных периодах полувыведения рассчитывались по формуле:

$$T_{\rm eff} = \frac{T_{\rm biol} \cdot T_{1/2}}{T_{\rm biol} + T_{1/2}},$$

где $T_{\rm eff}$ – эффективный период полувыведения препарата, ч; $T_{\rm biol}$ — биологический период полувыведения препарата из органа или ткани, ч; $T_{1/2}$ – физический период полураспада радионуклида, ч.

Аппроксимация экспериментальных данных и расчет биологических периодов полувыведения проводились в программе OriginPro 2019b.

Результаты и их обсуждение. Согласно полученным результатам, наиболее высокое содержание 68 Ga-NODA-AГ и 68 Ga-NODA-TГ было зарегистрировано в почках, а

наименьшее – в головном мозге. При этом в большинстве органов пиковые концентрации радиоактивности были отмечены через 5 мин после введения ⁶⁸Ga-NODA-AГ и ⁶⁸Ga-NODA-TГ (рис. 2).

Рис. 2: Концентрация ⁸⁶ Ga-NODA-AГ (a) и ⁶⁸ Ga-NODA-TГ (б) в органах и тканях интактных мышей BALB/c в различные сроки после внутривенного введения препаратов. (Сокращение по оси абсцисс: ТК – тонкий кишечник, ГМ – головной мозг, КБ – кость бедра.)

В почках начальный уровень ⁶⁸Ga-NODA-AГ составил 24.82%/г, однако уже через 1 ч эта величина снизилась в 8 раз до $2.99\%/\Gamma$ (p < 0.001), незначительно изменяясь ($1.79-2.06\%/\Gamma$) в последующие сроки (p > 0.05). Накопление ⁶⁸Ga-NODA-TГ в почках не превышало $14.04\%/\Gamma$ в срок 5 мин и $2.11-2.59\%/\Gamma$ через 1–3 ч. Важно отметить, что вели-

чины накопления ⁶⁸Ga-NODA-AГ и ⁶⁸Ga-NODA-TГ в почках были выше, чем в других органах и тканях во все сроки исследования. Это связано, скорее всего, с выведением меченых соединений через мочевыделительную систему. Тем не менее, ⁶⁸Ga-NODA-AГ и ⁶⁸Ga-NODA-TГ характеризовались одинаковыми величинами периодов полувыведения активности из почек ($T_{\rm biol} = 0.21$ ч, $T_{\rm eff} = 0.18$ ч).

В крови концентрация ⁶⁸Ga-NODA-АГ была выше, чем ⁶⁸Ga-NODA-ТГ через 5 мин после введения (8.41%/г и 4.75%/г, соответственно). Спустя 1 ч и в последующие сроки концентрация ⁶⁸Ga-NODA-ТГ (0.02–0.39%/г) была выше по сравнению с ⁶⁸Ga-NODA-АГ (0.08–0.43%/г), за счет более высокой скорости выведения активности из крови после инъекции ⁶⁸Ga-NODA-АГ по сравнению с ⁶⁸Ga-NODA-ТГ.

Аналогичная тенденция распределения ⁶⁸Ga-NODA-AГ и ⁶⁸Ga-NODA-TГ была отмечена в остальных внутренних органах и тканях. Через 5 мин после инъекции концентрация ⁶⁸Ga-NODA-TГ была ниже по сравнению с ⁶⁸Ga-NODA-AГ, однако в последующие сроки концентрация ⁶⁸Ga-NODA-AГ в органах и тканях была выше, чем ⁶⁸Ga-NODA-TГ (рис. 2).

В настоящее время известны лишь два соединения на основе производных глюкозы и ⁶⁸Ga: ⁶⁸Ga-1,4,7,10-тетраазациклододекан-1,4,7,10-тетрауксусная кислота-2-дезокси-D-глюкозамин (⁶⁸Ga-DOTA-DG) и ⁶⁸Ga-этилендицистеин-глюкозамин (⁶⁸Ga-ECG) [9, 10]. Изучение их биораспределения проводилось на животных с перевитыми опухолями. В отличие от ⁶⁸Ga-NODA-AГ и ⁶⁸Ga-NODA-TГ, содержание ⁶⁸Ga-ECG в крови снижалось незначительно [10]. Низкой была и удельная активность ⁶⁸Ga-ECG в почках [10].

Концентрация в крови другого соединения, ⁶⁸Ga-DOTA-DG, быстро снижалась, также как и ⁶⁸Ga-NODA-AГ и ⁶⁸Ga-NODA-TГ [9]. В почках накопление ⁶⁸Ga-DOTA-DG было высоким в течение эксперимента, что аналогично поведению ⁶⁸Ga-NODA-AГ и ⁶⁸Ga-NODA-TГ [9]. Повышенное накопление активности и ее длительное удержание в почках было отмечено и при внутривенном введении ^{99m}Tc-глюкозамина [11].

Минимальное накопление ⁶⁸Ga-NODA-AГ и ⁶⁸Ga-NODA-TГ было зарегистрировано в головном мозге. Концентрация ⁶⁸Ga-NODA-AГ и ⁶⁸Ga-NODA-TГ составили 0.02– $0.32\%/\Gamma$ и 0.03– $0.22\%/\Gamma$, соответственно (рис. 2). Таким образом, ⁶⁸Ga-NODA-AГ и ⁶⁸Ga-NODA-TГ характеризовались минимальным накоплением в головном мозге, что выгодно отличает их от ¹⁸F-ФДГ, концентрация которого в тканях мозга может достигать 2.36–5.81%/г [9, 10]. Низкая концентрация ⁶⁸Ga-NODA-AГ в головном мозге (до $0.43\%/\Gamma$) была отмечена ранее у мышей с трансплантированной подкожно опухолью толстого кишечника [12]. Более того, высокое содержание ¹⁸F-ФДГ характерно и для сердца [9, 10], в то время как уровень накопления ⁶⁸Ga-содержащих производных глюкозы в сердце крайне мало. Так, величины концентрации составили 0.01–3.26%/г при инъекции ⁶⁸Ga-NODA-AГ и 0.08–1.62%/г – ⁶⁸Ga-NODA-TГ.

Таблица 1

N⁰	Наименование	Периоды полувыведения, ч			
п/п	органа, ткани	$T_{ m biol}$		$T_{ m eff}$	
		68 Ga-NODA-A Γ	⁶⁸ Ga-NODA-ТГ	68 Ga-NODA-A Γ	68 Ga-NODA-T Γ
1	Кровь	0.21	0.26	0.18	0.21
2	Легкие	0.24	0.26	0.20	0.21
3	Печень	0.61	—	0.40	—
4	Почки	0.21	0.21	0.18	0.18
5	Сердце	0.25	0.22	0.20	0.18
6	Селезенка	0.17	0.78	0.15	0.46
7	Желудок	0.21	0.17	0.18	0.15
8	Тонкий кишечник	0.27	0.22	0.22	0.18
9	Головной мозг	0.35	0.24	0.27	0.20
10	Мышечная ткань	0.25	0.20	0.20	0.17
11	Кость бедра	0.23	0.27	0.19	0.22
12	Кожа	0.23	0.26	0.19	0.21

Периоды полувыведения ⁶⁸ Ga-NODA-AГ и ⁶⁸ Ga-NODA-TГ из органов и тканей интактных мышей BALB/c

Оба соединения, ⁶⁸Ga-NODA-AГ и ⁶⁸Ga-NODA-TГ, характеризовались высокими значениями клиренса органов и тканей. Интересно, что быстрее всего происходило выведение ⁶⁸Ga-NODA-AГ из селезенки ($T_{\rm biol} = 0.17$ ч, $T_{\rm eff} = 0.15$ ч), тогда как периоды полувыведения ⁶⁸Ga-NODA-TГ из селезенки, напротив, были самыми высокими ($T_{\rm biol} = 0.78$ ч, $T_{\rm eff} = 0.46$ ч). ⁶⁸Ga-NODA-AГ быстрее, чем ⁶⁸Ga-NODA-TГ, выводилась из легких, бедренной кости и кожи. В свою очередь, ⁶⁸Ga-NODA-TГ характеризовалась ускоренным, по сравнению с ⁶⁸Ga-NODA-AГ, выведением из сердца, желудка, тонкого кишечника, головного мозга и мышечной ткани.

Выведение ⁶⁸Ga-NODA-AГ из печени было немного медленнее по сравнению с другими органами ($T_{\rm biol} = 0.61$ ч, $T_{\rm eff} = 0.40$ ч). Концентрация ⁶⁸Ga-NODA-TГ в печени снижалась незначительно: с 1.83%/г в срок 5 мин до 1.13%/г через 3 ч после введения препарата, т. е. за период наблюдения не произошло уменьшения удельной активности ⁶⁸Ga-NODA-TГ в печени в 2 раза, и временная зависимость не описывалась экспонентой. Из-за этого расчет периодов полувыведения ⁶⁸Ga-NODA-TГ из печени не представлялся возможным.

Заключение. Таким образом, после однократного внутривенного введения 68 Ga-NODA-AГ и 68 Ga-NODA-TГ интактным мышам BALB/с происходило быстрое выведение активности из органов и тканей. Значения периодов биологического и эффективного полувыведения 68 Ga-NODA-AГ и 68 Ga-NODA-TГ не превышали 1 ч. Наибольшие величины концентраций активности были зарегистрированы лишь через 5 мин после внутривенного введения 68 Ga-NODA-AГ и 68 Ga-NODA-TГ. Наиболее высокое накопление активности было отмечено в почках.

При проведении настоящей работы были соблюдены все применимые международные, национальные и институциональные принципы ухода и использования животных.

Исследования проведены при финансовой поддержке Министерства образования и науки Российской Федерации (соглашение от 26 ноября 2018 г. № 075-02-2018-097) Уникальный идентификатор проекта RFMEFI57518X0174.

ЛИТЕРАТУРА

- [1] C. Marbaniang and L. Kma, J. Cancer Prev. **19**(9), 2377 (2018).
- [2] В. М. Петриев, В. К. Тищенко, Р. Н. Красикова, Химико-фармацевтический журнал **50**(4), 3 (2016). DOI: 10.1007/s11094-016-1425-у.
- [3] I. Velikyan, Theranostics 4(1), 47 (2014).
- [4] В. К. Тищенко, В. М. Петриев, И. Н. Завестовская и др., Радиация и риск 29(1), 102 (2020).
- [5] В. М. Петриев, В. К. Тищенко, Е. Д. Степченкова и др., Краткие сообщения по физике ФИАН 46(2)6 31 (2019). DOI: 10.3103/S1068335619100051.
- [6] В. К. Тищенко, В. М. Петриев, А. А. Михайловская и др., Бюллетень экспериментальной биологии и медицины **168**(12), 739 (2019).
- [7] В. М. Петриев, В. К. Тищенко, О. А. Сморызанова и др., Краткие сообщения по физике ФИАН 46(2), 31 (2019). DOI: 10.3103/S1068335619020052.
- [8] H. Feng, X. Wang, J. Chen, et al., Contrast Media Mol. Imaging **2019**, 7954854 (2019).
- [9] Z. Yang, C. Xiong, R. Zhang, et al., Am. J. Nucl. Med. Mol. Imaging 2(4), 499 (2012).
- [10] Y. H. Zhang, J. Bryant, F. L. Kong, et al., J. Biomed. Biothecnol. 2012, ID 232863 (2012).
- [11] V. K. Tishchenko, V. M. Petriev, A. A. Mikhailovskaya, et al., IOP Conf. Series: Journal of Physics: Conf. Series 1439, 012033 (2020).
- [12] V. K. Tishchenko, V. M. Petriev, A. A. Mikhailovskaya, et al., Pharmacokinetic properties of a new potential tumor imaging agent based on glucose derivative and

gallium-68. In: 4th Intrnational Symposium and School for Young Scientists on "Physics, Engineering and Technologies for Biomedicine": Book of Abstracts (Moscow MEPhI, 2019), pp. 62–63.

> Поступила в редакцию 18 июля 2020 г. После доработки 25 сентября 2020 г. Принята к публикации 27 сентября 2020 г.