УДК 539.126

ИЗУЧЕНИЕ ФОРМФАКТОРА $\gamma^* \omega \pi^0$ НА ДЕТЕКТОРЕ СНД

М. Н. Ачасов^{1,2}, А. А. Байков^{1,2}, А. Ю. Барняков¹,

К.И. Белобородов^{1,2}, А.В. Бердюгин^{1,2}, А.Г. Богданчиков¹,

А.А. Ботов¹, В.Б. Голубев¹, Т.В. Димова^{1,2}, В.П. Дружинин^{1,2},

В. Н. Жабин¹, В. В. Жуланов^{1,2}, Л. В. Кардапольцев^{1,2},

Д. П. Коврижин¹, А. А. Король^{1,2}, А. С. Купич¹, К. А. Мартин¹,

Н. А. Мельникова¹, Н. Ю. Мучной^{1,2}, А. Е. Образовский¹,

Е.В. Пахтусова¹, К.В. Пугачев^{1,2}, Я.С. Савченко^{1,2},

С.И. Середняков^{1,2}, З.К. Силагадзе^{1,2}, И.К. Сурин¹,

Ю. В. Усов¹, А. Г. Харламов^{1,2}, Д. А. Штоль¹

В этой статье мы представляем измерение формфактора $\gamma^* \omega \pi^0$ в диапазоне масс виртуального фотона 1 ГэВ< $\sqrt{q^2} < 2$ ГэВ в процессе $e^+e^- \to \omega \pi^0 \to \pi^+ \pi^- \pi^0 \pi^0$. Измерения основаны на данных, набранных детектором СНД на e^+e^- -коллайдере ВЭПП-2000 в Новосибирске. Полученный формфактор аппроксимирован в модели доминантности векторных мезонов (VMD). Также выполнена совместная подгонка формфактора, полученного в экспериментах СНД и NA60.

Ключевые слова: электромагнитный формфактор, модель доминантности векторных мезонов, СНД, ВЭПП-2000.

¹ Институт ядерной физики им. Г.И. Будкера СО РАН, 630090 Россия, Новосибирск, проспект Академика Лаврентьева, 11; e-mail: V.N.Zhabin@inp.nsk.su.

 $^{^2}$ Новосибирский государственный университет, 630090 Россия, Новосибирск, ул. Пирогова, 1.

Введение. Формфактор $\gamma^* \omega \pi^0$ описывает три различных процесса: $\omega \to \gamma \pi^0 (q^2 = 0)$, $\omega \to \gamma^* \pi^0 \to \mu^+ \mu^- \pi^0 (2m_\mu < \sqrt{q^2} < m_\omega - \mu_{\pi^0})^1$ и $e^+ e^- \to \gamma^* \to \omega \pi^0 (\sqrt{q^2} > m_\omega + m_{\pi^0})$, где q^2 – квадрат переданного виртуальному фотону импульса. В этой работе мы изучаем формфактор в диапазоне 1 ГэВ < 2E < 2 ГэВ, где 2E – энергия в системе центра масс, в процессе $e^+ e^- \to \omega \pi^0 m \to \pi^+ \pi^- \pi^0 \pi^0$.

Вклад механизма $\omega \pi^0$ доминирует в сечении процесса $e^+e^- \to \pi^+\pi^-\pi^0\pi^0$ в диапазоне энергий 1—1.5 ГэВ и, следовательно, дает заметный вклад в адронную поляризацию вакуума и аномальный магнитный момент мюона. Формфактор $\gamma^*\omega\pi^0$ используется для исследования возбужденных состояний ρ -подобных резонансов, в частности, для определения параметров $\rho(1450)$. В распаде $\omega \to \mu^+\mu^-\pi^0$ в эксперименте NA60 [1] наблюдается значительное расхождение между измеренной зависимостью формфактора от q^2 и предсказанием модели доминантности векторных мезонов (VMD).

Последние измерения сечения $e^+e^- \to \omega \pi^0$ были выполнены на СНД в конечном состоянии $\pi^0 \pi^0 \gamma$ [2] и на детекторе BaBar в конечном состоянии $\pi^+ \pi^- \pi^0 \pi^0$ [3].

Эксперимент и условия отбора. В нашем анализе использованы данные с интегральной светимостью 35 пб⁻¹, набранные в 2011–2012 г.г. детектором СНД на электронпозитронном коллайдере ВЭПП-2000. Данные были набраны в 56 точках по энергии. СНД – это детектор общего назначения без магнитного поля. Его основные системы – сферический электромагнитный NaI(Tl) калориметр и трековая система, а вспомогательные – мюонная система и аэрогелевые черенковские счетчики.

Для измерения сечения отбираются экспериментальные события с двумя заряженными частицами и четырьмя фотонами, которые проходят кинематическую реконструкцию в гипотезе $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$. Для анализа берутся события с χ^2 кинематической реконструкции $\chi^2 < 40$, что обеспечивает достаточное подавление фоновых процессов при достаточной эффективности регистрации сигнальных событий (рис. 1 (a)).

Эффективность регистрации рассчитывается с использованием Монте-Карло моделирования. При моделировании учитываются поправки на излучение фотона системой в начальном состоянии, которые вычисляются итерационным методом с использованием измеренного в этой работе борновского сечения $e^+e^- \rightarrow \omega \pi^0$.

Для определения вклада $\omega \pi^0$ в отобранные экспериментальные события мы проводим подгонку распределения инвариантной массы $\pi^+\pi^-\pi^0$, показанного на рис. 1(б). Вклады событий механизма $\omega \pi^0$ и механизмов, отличных от $\omega \pi^0$, являются свободны-

¹Здесь и далее используется система единиц, где c = 1.

Рис. 1: (а) Распределение событий по χ^2 кинематической реконструкции. Для отбора событий в дальнейшем использовалось условие отбора $\chi^2 < 40$. MC – Монте-Карло моделирование. (б) Распределение инвариантной массы $\pi^+\pi^-\pi^0$ при 2E = 1960 МэВ для отобранных событий (точки с ошибками). Сплошная кривая – результат подгонки, описанной в тексте. Зеленая закрашенная область (1) представляет собой вклад промежуточных состояний, отличных от $\omega\pi^0$. Красная область (2) – это вклад фоновых процессов. Белая область (3) – извлекаемый процесс $\omega\pi^0$. Пик в районе 800 МэВ определяется распадом $\omega \to \pi^+\pi^-\pi^0$, который и является сигнальным процессом. Ширина бина – 22.242 МэВ.

ми параметрами, в то время как вклад фоновых процессов, отличных от 4π , фиксирован. Распределения для сигнальных и фоновых событий, используемые в подгонке, получены с помощью Kernel Density Estimation [4] на основе Монте-Карло моделирования. Количество событий для каждого фонового процесса рассчитывается как $N_{\rm bkg} = \varepsilon_{\rm bkg} I L \sigma_{\rm bkg}$, где $\sigma_{\rm bkg}$ и $\varepsilon_{\rm bkg}$ – его сечение и эффективность регистрации, а IL – интегральная светимость. Чтобы определить эффективность регистрации, а также распределение, используемое в подгонке, для каждого фонового процесса проводится отдельное моделирование.

Результаты и интерпретация. Измеренное сечение $e^+e^- \to \omega \pi^0$ связано с формфактором $F_{\gamma\omega\pi}$ следующим выражением:

$$\sigma_{e^+e^- \to \omega \pi^0 \to \pi^+ \pi^- \pi^0 \pi^0}(s) = \frac{4\pi \alpha^2}{s^{3/2}} P_f(s) |F_{\gamma \omega \pi}(s)|^2,$$

где $P_f(s)$ – фактор фазового объема для конечного состояния $\omega \pi^0$.

Формфактор, полученный в этой работе, показан на рис. 2 вместе с предыдущими измерениями СНД [2, 5, 6] и BaBar [3], и данными NA60 [1] из распада $\omega \to \mu^+ \mu^- \pi^0$. По-

Рис. 2: Формфактор $\gamma^* \omega \pi^0$, полученный на СНД в этой работе (новые данные) и в работах [5,6] вместе с данными NA60 [1] из распада $\omega \to \mu^+ \mu^- \pi^0$. Также приведены данные СНД в канале $\omega \to \pi^0 \gamma$ [2] и BaBar [3] (показаны систематические ошибки), не участвовавшие в аппроксимации. Кривые – результаты описанной в тексте аппроксимации. Формфактор $\gamma^* \omega \pi^0$ аппроксимирован в модели VMD.

лученный формфактор согласуется с предыдущими измерениями в области 1–2 ГэВ, но при этом имеет лучшую статистическую точность, чем измерение СНД [2], и меньшую систематическую неопределенность, чем измерение BaBar [3], при сравнимой статистической неопределенности.

В VMD формфактор описывается как сумма вкладов векторных мезонов (Модель \mathbb{N}° 1):

$$F_{\gamma\omega\pi}(s) = \sum_{i=0} \frac{A_{\rho(i)} + M_{\rho(i)}^2 e^{i\varphi}\rho(i)}{M_{\rho(i)}^2 - s - i\sqrt{s}\Gamma_{\rho(i)}(s)},$$

где $\rho(i)$ – это ρ, ρ' , или $\rho'', A_{\rho(i)}$ и $\varphi_{\rho(i)}$ – модуль и аргумент амплитуды резонанса, $M_{\rho(i)}$ и $\Gamma_{\rho(i)}$ – его масса и ширина. Модель № 2 основана на результатах работы [7]:

$$F_{\gamma\omega\pi}(s) = A_{\rho(0)} \frac{M_{\rho(i)}^2 + s(A_{\rho(1)}e^{i\varphi}\rho(1) + A_{\rho(2)}e^{i\varphi}\rho(2))}{M_{\rho(i)}^2 - s - i\sqrt{s}\Gamma_{\rho(i)}(s)} \exp\left(-\frac{sA_{\pi}(s)}{96\pi^2 F_{\pi}^2}\right) + \sum_{i=1}^2 A_{\rho(i)} \frac{-s}{M_{\rho(i)}^2 - s - i\sqrt{s}\Gamma_{\rho(i)}(s)} \exp\left(-\frac{s\Gamma_{\rho(i)}(s)A_{\pi}(s)}{\pi M_{\rho(i)}^3 \sigma_{\pi}^3(M_{\rho(i)}^2)}\right),$$

определения для $A_{\pi}(s), F_{\pi}^2$ и $\sigma_{\pi}^3(q^2)$ даны в приложении к работе [7]. Ожидается, что эта модель, основанная на дисперсионной теории, имеет большую точность в области

 $\sqrt{q^2}$ ниже массы ω . В обеих моделях массы и ширины ρ' и ρ'' могут варьироваться относительно значений в справочнике PDG [8] в пределах их неопределенности.

Таблица 1

	Модель № 1	Модель № 2
$A_{ ho}$	$3.42^{+0.09}_{-0.08}$	2.41 ± 0.02
$A_{ ho'}$	$2.50_{-0.44}^{+0.42}$	-0.24 ± 0.01
$M_{\rho'}, \ \Gamma$ эВ	$1.486^{+0.026}_{-0.028}$	$1.330^{+0.027}_{-0.026}$
$\Gamma_{\rho'}, \Gamma$ эВ	$0.583^{+0.041}_{-0.044}$	$0.826^{+0.042}_{-0.041}$
$\phi_{ ho'},~^{\circ}$	$231.6^{+4.0}_{-4.5}$	-132.9 ± 7.5
$A_{\rho^{\prime\prime}}$	$1.13\substack{+0.29\\-0.26}$	-0.15 ± 0.01
$M_{\rho^{\prime\prime}}, \Gamma$ эВ	$1.680^{+0.023}_{-0.021}$	$1.721^{+0.018}_{-0.017}$
$\Gamma_{\rho^{\prime\prime}}, \Gamma$ эВ	$0.431_{-0.056}^{+0.052}$	$0.541^{+0.044}_{-0.039}$
$\phi_{ ho^{\prime\prime}},~^{\circ}$	$74.1_{-6.9}^{+6.5}$	$420.4^{+7.8}_{-7.4}$
$\chi^2_{ m полный}$	270.8/84	379.0/84
$\chi^2_{ m эта \ работа}$	77.7/56	116.8/56
$\chi^2_{ m NA60}$	153.1/22	163.3/22
$\chi^2_{\text{параметров}}$	17.3/4	88.4/4
$P_{\text{полная}}$	$1.69 \cdot 10^{-21}$	$4.53 \cdot 10^{-39}$

Результаты аппроксимации

В табл. 1 показаны результаты подгонки формфактора в этих моделях. Помимо полученных из подгонки параметров резонансов, в таблице приведены значения, характеризующие качество подгонки: $\chi^2_{\text{полный}}$ – полный χ^2 , используемый в подгонке, $\chi^2_{\text{эта работа}}$ построен по точкам, измеренным в данной работе, χ^2_{NA60} – по точкам из измерения NA60, $\chi^2_{\text{параметров}}$ – построен по отклонению параметров резонансов (массы и ширины) относительно их параметров из PDG [8], $P_{\text{полная}}$ – вероятность, соответствующая $\chi^2_{\text{полный}}$. Через наклонную черту обознчено соответствующее число степеней свободы (ndf).

Вероятности $P_{\text{полная}}$ в табл. 1 и рис. 2 наглядно демонстрируют, что как Модель № 1, так и Модель № 2 не могут одновременно описать точки формфактора, полученные в реакции $e^+e^- \rightarrow \omega \pi^0$ и в распаде $\omega \rightarrow \mu^+\mu^-\pi^0$. Данные NA60 демонстрируют гораздо более быстрый рост с увеличением энергии, чем модель VMD – форма левого склона ρ -мезона достаточно хорошо фиксируется его известной шириной и требованием равенства единице формфактора в нуле.

Заключение. Формфактор $\gamma^* \omega \pi^0$ измерен в процессе $e^+e^- \to \omega \pi^0$. Результаты согласуются с предыдущими измерениями, но имеют лучшую точность. Формфактор аппроксимирован в модели VMD, включающей возбужденные состояния ρ мезона в двух вариантах. Обнаружено, что модель VMD не может одновременно описать данные из процесса $e^+e^- \to \omega \pi^0$ и распада $\omega \to \mu^+\mu^-\pi^0$.

ЛИТЕРАТУРА

- R. Arnaldi, K. Baniczbe, K. Borerd, et al., Phys. Lett. B 757, 437 (2016), arXiv:1608.07898 [hep-ex], DOI: 10.1016/j.physletb.2016.04.013.
- M. N. Achasov, A. Yu. Barnyakov, K. I. Beloborodov, et al., Phys. Rev. D 94, 112001 (2016), arXiv:1610.00235 [hep-ex], DOI: 10.1103/PhysRevD.94.112001.
- [3] J. P. Lees, V. Poireau, V. Tisserand, et al., Phys. Rev. D 96, 092009 (2017), arXiv:1709.01171v1 [hep-ex], DOI: 10.1103/PhysRevD.96.092009.
- [4] K. Cranmer, Kernel Estimation in High-Energy Physics, arXiv:hep-ex/0011057v1 17 Nov 2000.
- [5] В. М. Аульченко, М. Н. Ачасов, К. И. Белобородов и др., ЖЭТФ 117(6), 1067 (2000). DOI: 10.1134/1.559181.
- [6] М. Н. Ачасов, К. И. Белобородов, А. В. Бердюгин и др., ЖЭТФ 136(3), 442 (2009).
 DOI: 10.1134/S1063776109090039.
- [7] S. P. Schneider, B. Kubis, and F. Niecknig, Phys. Rev. D 86, 054013 (2012), DOI: 10.1103/PhysRevD.86.054013.
- [8] P. A. Zyla, R. M. Barnett, J. Beringer, et al., Prog. Theor. Exp. Phys. 2020, 083C01 (2020), DOI: 10.1093/ptep/ptaa104, https://pdg.lbl.gov/.

Поступила в редакцию 30 июля 2020 г.

После доработки 2 февраля 2021 г.

Принята к публикации 3 февраля 2021 г.

Публикуется по рекомендации Московской международной школы физики-2020 (ФИАН, Москва).