ФИЗИКА КОНДЕНСИРОВАННЫХ СРЕД

УДК 538.9

IN SITU ИССЛЕДОВАНИЕ ВЛИЯНИЯ СУРФАКТАНТА Ві НА ФОРМИРОВАНИЕ КВАНТОВЫХ ТОЧЕК В СИСТЕМЕ InGaAs/GaAs МЕТОДОМ МОЛЕКУЛЯРНО-ЛУЧЕВОЙ ЭПИТАКСИИ

И.П. Казаков

Исследован процесс формирования квантовых точек методом молекулярно-лучевой эпитаксии в системе InGaAs/GaAs при воздействии потока паров Bi на поверхность роста при различных температурах подложки GaAs. Показано, что Bi действует как сурфактант, понижая температуру образования квантовых точек примерно на 50 °C.

Ключевые слова: гетероструктуры InGaAs/GaAs, сурфактант Bi, молекулярнолучевая эпитаксия, квантовые точки, дифракция быстрых электронов.

Введение. Интерес к разбавленным твёрдым растворам на основе висмутидов V группы, например, GaBiAs, InBiAs и др., обусловлен их уникальными свойствами, такими как резкое уменьшение ширины запрещённой зоны Eg в зависимости от содержания Bi, аномально слабая зависимость величины Eg от температуры и гигантское, достигающее Eg, спин-орбитальное расщепление Δ_{so} [1]. Технологическое освоение этих термодинамически нестабильных твёрдых растворов сопровождается значительными трудностями из-за их склонности к фазовому расслоению, упорядочению, сегрегации Bi. Вместе с тем, особенности формирования структуры висмутидов V группы открывают новые возможности для создания квантово-размерных объектов новых типов [2].

В Лаборатории молекулярно-лучевой эпитаксии ФИАН развёрнуты исследования по разработке технологии выращивания квантово-размерных гетероструктур (ГС) на основе системы InGaBiAs, в частности, квантовых точек (КТ). Мы уже сообщали о получении квантово-размерных объектов в этой системе методом молекулярно-лучевой эпитаксии (МЛЭ) как при низкой температуре подложки T_n, когда происходит захват

ФИАН, 119991 Россия, Москва, Ленинский пр-т, 53; e-mail: kazakovip@lebedev.ru.

Ві растущим эпитаксиальным слоем [3], так и при достаточно высоком значении $T_{\rm n}$, когда Ві не входит в растущий слой, но выполняет функцию сурфактанта [4]. В статье представлены результаты in situ исследований начальной стадии образования KT InGaAs/GaAs, как наиболее чувствительной к изменениям режимов роста из-за процессов зарождения и созревания.

Методика эксперимента. ГС выращивались на полуизолирующих подложках *i*-GaAs (001) методом МЛЭ на установке ЦНА-25 [5] из обычных тигельных молекулярных источников. После десорбции окислов, осаждался буферный слой GaAs (рис. 1, слой 1) толщиной 160 нм при температуре подложки $T_{\rm n} = 630$ °C со скоростью 0.19 нм/с.

N⁰	Состав	Толщина, нм
4	$In_{0.52}Ga_{0.48}As$	1.6
3	GaAs	100
2	$In_{0.52}Ga_{0.48}As$	1.6
1	GaAs	160
Подложка i-GaAs (001)		

Рис. 1: Схема ГС.

Для формирования КТ в слоях 2 и 4 образца А (контрольный, без Ві), температура $T_{\rm n}$ понижалась до 495 °C и проводилось осаждение 5 монослоёв (MC) In_{0.52}Ga_{0.48}As методом циклического осаждения последовательности InAs (1 c)/GaAs (1 c) x 8 при эквивалентных давлениях паров (ЭДП) In, Ga, и As₄ 3.6 × 10⁻⁷, 1.7 × 10⁻⁷ и 2.5 × 10⁻⁶ мм рт.ст., соответственно. Выращивание слоёв 2 и 4 в образцах В, С, D проводилось в потоке паров Ві при температурах $T_{\rm n}$, равных 495, 467, 435 °C, соответственно. Скорость осаждения была измерена на специально выращенных образцах с толщиной слоёв 0.3 мкм и составляла 0.095 нм/с как для InAs, так и для GaAs. Покровный слой GaAs 3 выращивался при том же значении $T_{\rm n}$, что и слои 2 и 4. Перед началом осаждения слоёв 2 и 4 в образцах В, С, D поверхность GaAs выдерживалась в парах Ві в течение 30 с.

Содержание In в твёрдом растворе определялось методом рентгеновской дифракции (РД) на специально выращенном на подложке InP слое In_{0.52}Ga_{0.48}As при указанных выше значениях ЭДП. Материал подложки был выбран из-за соответствия параметров кристаллической решётки InP и твёрдого раствора In_{0.52}Ga_{0.48}As.

Поток атомов Ві на поверхность растущей ГС определялся по измерениям методом РД состава специального образца со слоем $GaBi_xAs_{1-x}$ толщиной 50 нм, выращенном на подложке GaAs при достаточно низкой температуре $T_{\pi} = 285$ °C, когда реиспарение Ві с ростовой поверхности не происходит [1]. Для увеличения концентрации Ві в

твёрдом растворе GaBi_xAs_{1-x} ЭДП Ga было понижено до 6 × 10⁻⁸ мм рт.ст., а ЭДП Bi было такое же, как и при выращивании ГС. Значение концентрации Bi, рассчитанное с использованием закона Вегарда в предположении разбавленного твёрдого раствора GaBi_xAs_{1-x}, было равно x = 0.105. Это позволило оценить поток атомов Bi на поверхность подложки при выращивании слоёв In_{0.52}Ga_{0.48}As величиной 5.8×10^{12} at/cm²/c. При выращивании KT поток атомов III группы составлял 1.1×10^{14} at/cm²/c. Таким образом, соотношение потоков Bi и элементов III группы при выращивании ГС было равно Bi/III ≈ 0.05.

Рис. 2: Рентгенодифрактограмма эпитаксиального слоя $GaAs_{1-x}Bi_x$ с концентрацией x = 0.105 (пик слева), выращенного на подложке GaAs (001) (пик справа). Эксперимент – синяя кривая, моделирование – красная.

Температура $T_{\rm n}$ измерялась с точностью ±5 °C с помощью термопары, расположенной в центре нагревателя, и инфракрасного пирометра Mikron M680, который использовался для контроля переходных процессов при изменении $T_{\rm n}$. Калибровка $T_{\rm n}$ проводилась по следующим структурным переходам на поверхности подложки GaAs (001), наблюдаемым методом дифракции быстрых электронов (ДБЭ) в условиях отсутствия потока As: десорбция аморфного As, смена реконструкций (4×4) \rightarrow (2×3) \rightarrow (2×4) \rightarrow (3×6) \rightarrow (4×2), которые происходят при характерных температурах 250, 354, 395, 500, 549 °C, соответственно, [6]. Наблюдение за формированием ГС в ростовой камере установки МЛЭ проводилось методом ДБЭ. Результаты структурных исследований полученных образцов методами атомно-силовой и электронной микроскопии будут опубликованы позже.

Результаты и обсуждение. Предварительно, перед выращиванием ГС А-D, были проведены эксперименты по наблюдению ДБЭ при циклическом осаждении 5 МС $In_{0.52}Ga_{0.48}As$ при выше указанных ЭДП и различных температурах T_n . После выращивания буферного слоя (рис. 1, слой 1) на всех образцах наблюдалась картина дифракции (КД), характерная для реконструкции атомно-гладкой поверхности GaAs (2×4), как показано на рис. 3(а).

Рис. 3: $K\mathcal{A}$ в азимутах [110] и [110] на поверхности подложки GaAs после схода окисла (a), на поверхности слоя из 5 MC In_{0.52}Ga_{0.48}As (б), (c) в отсутствие потока Bi при различных температурах T_n : 630 °C (a), 495 °C (b), 467 °C (c).

При температуре $T_{\pi} = 495$ °C КД от поверхности выращенного слоя In_{0.52}Ga_{0.48}As становилась точечной (рис. 3 (b)), а при $T_{\pi} = 467$ °C наблюдалась слегка размытая КД с вытянутыми рефлексами дифракции электронов (рис. 3(c)).

Переход от вытянутых рефлексов (рис. 3(a)) к точечным (рис. 3(b)) означает образование КТ (переход $2D \rightarrow 3D$) на растущей поверхности эпитаксиального слоя (рис. 4), а высокая яркость рефлексов свидетельствует о незначительных напряжениях несоответствия кристаллических решёток In_{0.52}Ga_{0.48}As и GaAs, что характерно для КТ [6].

Напротив, присутствие вытянутых рефлексов (рис. 3(c)) означает, что поверхность слоя $In_{0.52}Ga_{0.48}As$ осталась атомно-гладкой, а размытие ДК указывает на наличие остаточных напряжений несоответствия из-за затруднённой его релаксации. Таким образом, было обнаружено, что при данных условиях выращивания и $T_{\rm n} = 495$ °C, релаксация напряжений несоответствия кристаллических решёток $In_{0.52}Ga_{0.48}As$ и GaAs происходит благодаря переходу $2D \rightarrow 3D$, а при $T_{\rm n} = 467$ °C релаксация затруднена.

Рис. 4: Изображение KT на поверхности слоя In_{0.52} Ga_{0.48}As образца A, полученное методом атомно-силовой микроскопии.

ДК от поверхности слоёв $In_{0.52}Ga_{0.48}As$ образцов В, С и D, выращенных в потоке атомов Bi (рис. 5), существенно отличались от ДК предварительно исследованных слоёв, выращенных без Bi (рис. 3). Формирование КТ наблюдалось при всех указанных значениях температуры $T_{\rm n}$. На всех ДК имелись рефлексы от промежуточной реконструкции (2×3), характерной для роста слоёв GaAs в присутствии паров Bi [7]. Как

Рис. 5: $K\mathcal{A}$ в азимутах [110] и [110] на поверхности слоёв $In_{0.52}Ga_{0.48}As$, выращенных в молекулярном потоке Bi при различных температурах T_n : (a) 495 °C (sample B), (b) 467 °C (sample C) и (c) 435 °C (sample D).

видно из рис. 5, формирование КТ наиболее отчётливо проявлялось при $T_{\rm n} = 495$ °C, о чём свидетельствует яркая КД. При понижении температуры $T_{\rm n}$ рефлексы приобретали всё более вытянутую форму (рис. 5(b) и (c)), свидетельствующую о выглаживании поверхности.

Как видно из рис. 2, при выращивании слоя GaAs в потоке атомов Вi при достаточно низкой температуре $T_{\rm n} = 285$ °C образуется твёрдый раствор GaBi_xAs_{1-x}, т. е. Bi входит в растущий слой с концентрацией x = 0.105 при соотношении ЭДП Bi/Ga = 0.75. При выращивании слоёв ГС 2 и 4 (рис. 1), ЭДП Bi/Ga = 0.27, что позволяет оценить возможную концентрацию Bi в них. В предположении образования твёрдого раствора $In_{0.52}Ga_{0.48}Bi_xAs_{1-x}$, при отсутствии реиспарения и сегрегации Bi, значение x должно быть равно 0.04.

Однако в нашем случае температуры T_n превышали 400 °С и сегрегация Ві должна играть существенную роль в формировании ГС. Действительно, реконструкция (2×3), которая наблюдалась на поверхности слоёв In_{0.52}Ga_{0.48}As в образцах В, С и D (рис. 4), выращенных в потоке Ві, является промежуточной при переходе от реконструкции (2×1), обычно наблюдаемой при росте GaBi_xAs_{1-x} и соответствующей 1 атомному слою Ві на поверхности GaAs, к реконструкции (4×3), характерной при остановке роста [8]. Если допустить, что фазовые диаграммы поверхности GaBi_xAs_{1-x} и GaAs со смачивающим слоем In_xGa_{1-x}As, на которой формируются КТ, различаются не сильно, то можно заключить, что поверхностная концентрация Ві на смачивающем слое высока (около 1 атомного слоя), что, принимая во внимание выше определённое значение $x \approx 0.04$ в предположении образования твёрдого раствора In_{0.52}Ga_{0.48}Bi_xAs_{1-x}, указывает на сильную сегрегацию Ві в процессе роста слоя In_xGa_{1-x}As и формирования КТ. Таким образом, Ві проявляет характерные свойства сурфактанта при всех температурах выращивания наших образцов (B, C, D).

В процессе 30 с выдержки в парах Ві поверхности GaAs перед осаждением КТ около 0.6 атомного слоя Ві должно осаждаться в предположении, что реиспарение отсутствует. Это обеспечивает формирование КТ в присутствии Ві, и, в то же время, не допускает образования капель Ві на растущей поверхности.

Заключение. В процессе МЛЭ исследовано формирование КТ методом ДБЭ в системе InGaAs/GaAs при воздействии потока паров Ві на поверхность роста при различных температурах $T_{\rm n}$.

Показано, что на поверхности растущих слоёв $In_xGa_{1-x}As$ в присутствии паров Ві наблюдается реконструкция (2×3), характерная для обогащения поверхности Ві, а температура образования КТ снижается примерно на 50 °C, что может указывать на проявление его сурфактантных свойств.

Автор выражает благодарность В. П. Мартовицкому за проведение измерений методом РД.

ЛИТЕРАТУРА

 K. Nagaraja, Yu. A. Mityagin, M. P. Telenkov, I. P. Kazakov, Critical Review in Solid State and Material Sciences 42(3), 239 (2016). DOI: 10.1080/10408436.2016.1186007.

- [2] E. Luna, M. Wu, J. Puustinen, et al., J. of Appl. Phys. 117, 185302-1 (2015). Doi.org/10.1063/1.4919896.
- [3] I. A. Likhachev, I. N. Trunkin, V. I. Tsekhosh, et al., J. Mater. Res. 33(16), 2342 (2018).
 DOI: 10.1557/jmr.2018.254.
- [4] H. Alghamdi, A. Alhassni, S. Alhassan, et al., Journal of Alloys and Compounds 905, 164015(2022). Doi.org/10.1016/j.jallcom.2022.164015.
- [5] И. П. Казаков, В. И. Цехош, М. Е. Игонин и др., Краткие сообщения по физике ФИАН 37(5), 6 (2010). DOI: 10.3103/S1068335610050027.
- [6] V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin, Semiconductors 36, 837 (2002).
 DOI: 10.1134/1.1500455.
- [7] A. Nemcsics, Growth information carried by reflection high-energy electron diffraction, In B. A. Joyce (eds.), Quantum Dots: Fundamentals, Applications, and Frontiers, pp. 221–237 (2003). Doi.org/10.1007/1-4020-3315-X_15.
- [8] F. Bastiman, A. Cullis, J. P. R. David, S. Sweeney, J. of Cryst. Growth 341, 19 (2012).
 DOI: 10.1016/j.jcrysgro.2011.12.058.

Поступила в редакцию 25 апреля 2024 г.

После доработки 26 августа 2024 г.

Принята к публикации 27 августа 2024 г.