Памяти моего учителя В. П. Кирсанова

УДК 537.523

## МОДЕЛЬ РАСШИРЕНИЯ ИМПУЛЬСНОГО ЭЛЕКТРИЧЕСКОГО РАЗРЯДА В ПЛОТНОМ ГАЗЕ С УЧЁТОМ ЭЛЕКТРОННОЙ И ЛУЧИСТОЙ ТЕПЛОПРОВОДНОСТЕЙ. III. ПРЕДЕЛЬНАЯ ТЕМПЕРАТУРА РАЗРЯДА

У. Юсупалиев

Из закона сохранения энергии для оболочки импульсного сильноточного электрического разряда в плотном газе (Xe, Kr, Ar, Ne, He, N<sub>2</sub>, воздухе) с учетом электронной и лучистой теплопроводностей и энергии, затраченной на ионизацию вовлекаемого в разряд газа, получено уравнение для относительной температуры разрядного канала. Из решения этого уравнения определено условие, при котором достигается предельная температура канала  $T_{\rm LIM}$ , а также получена универсальная зависимость между температурой  $T_{\rm LIM}$  и потенциалами ионизации атомов указанных газов. Показано, что эта универсальная зависимость согласуется с экспериментальными данными.

Ключевые слова: импульсный электрический разряд в газах, искровой разряд, электронная и лучистая теплопроводность.

1. Экспериментальные исследования мощного искрового разряда [1–7] и импульсного сильноточного электрического разряда [8–15] в газе при давлении порядка атмосферного и выше показали, что структура таких разрядов состоит из разрядного канала, плотной оболочки, ударной волны, а также [16] из области слабоионизованного и возбужденного газа перед фронтом ударной волны. Большинство исследователей

Учреждение Российской академии наук Институт общей физики им. А. М. Прохорова РАН; e-mail: nesu@phys.msu.ru

с практической точки зрения интересовало получение максимально высокой температуры разрядного канала. Однако впоследствии выяснилось, что температура канала таких разрядов при увеличении вводимой в них погонной мощности повышается только до определённого предела. Это явление было названо эффектом насыщения яркости излучения, а предел температуры – предельной температурой разряда. Указанный эффект достаточно подробно экспериментально исследован авторами работ [4–8, 10, 13].

В результате проведенных исследований были установлены следующие закономерности для температуры разрядного канала: для каждого газа существует своя предельная температура  $T_{\rm LIM}$ , при достижении которой канал излучает как абсолютно черное тело, а дальнейшее варьирование начальных параметров разрядного контура и газа не приводит к росту температуры плазмы разрядного канала. Следует отметить работу [10] В. П. Кирсанова, который впервые экспериментально установил связь между предельной температурой  $T_{\rm LIM}$  плазмы разрядного канала и вторым потенциалом ионизации атомов инертных газов  $I_2$ :

$$T_{\rm LIM} \approx 1400 I_2$$

где  $I_2$  – в эВ, а  $T_{\text{LIM}}$  – в К.

В нашей работе [17] на основе опытных данных и обобщенной переменной таких разрядов – безразмерного комплекса  $\Xi = \frac{U_{d0}FA_0}{B_0^2}$  – показано, что предельная температура разрядного канала  $T_{\rm LIM}$  достигается при выполнении условия  $\Xi \ge \Xi_{\rm LIM}$ , где

$$A_0 = \pi l_0 \rho_0 \left[ \left( \frac{\gamma_d}{\gamma_d - 1} \right) \left( \frac{\gamma_0 + 1}{2} \right) + \frac{1}{2} \right],$$
$$B_0 = \pi l_0 p_0 \left[ \frac{I_{\text{eff}}}{\theta_0} - \left( \frac{1}{\gamma_d - 1} \right) \left( \frac{\gamma_0 - 1}{\gamma_0 + 1} \right) - \left( \frac{2\gamma_0}{\gamma_0 + 1} \right) \right],$$

 $l_0$  – длина разрядного промежутка;  $U_{d0}$  – начальное падение напряжения на разрядном промежутке; F – начальная скорость нарастания разрядного тока;  $\gamma_d$  – показатель адиабаты плазмы разрядного канала;  $\rho_0, p_0, \theta_0 = kT_0$  и  $\gamma_0$  – плотность, давление, температура и показатель адиабаты окружающего разряд газа (k – постоянная Больцмана);  $I_{\rm eff}$  – энергия, затраченная на диссоциацию и ионизацию одной частицы газа. Значения безразмерного комплекса  $\Xi_{\rm LIM}$  для указанных выше газов приведены в таблице. В той же работе на основе опытных данных также установлено, что при  $\Xi \geq \Xi_{\rm LIM}$  для импульсного сильноточного электрического разряда в инертных газах, азоте и воздухе выполняется следующая универсальная зависимость между предельной температурой  $T_{\text{LIM}}$  и суммой потенциалов (первого  $I_1$  и второго  $I_2$ ) ионизации атома газов (см. таблицу):

$$\frac{kT_{\rm LIM}}{I_1 + I_2} \approx 0.074. \tag{1}$$

В настоящее время существующие теоретические модели для указанных разрядов не позволяют определить условия достижения предельных температур и их величин [12– 14, 18–21]. Цель данной работы состоит в количественном описании эффекта насыщения яркости излучения импульсного сильноточного электрического разряда в плотном газе (определении этих условий и величин предельных температур).

2. Для этого, прежде всего, рассмотрим механизм расширения такого разряда по плотному газу в объеме, необходимом для обоснования предлагаемой модели. В [16] показано, что механизмом расширения разряда по газу является ионизация и нагрев вовлекаемого в разряд газа оболочки в результате поглощения потока энергии УФизлучения разрядного канала и потока тепловой энергии, переносимой в процессе электронной теплопроводности из разрядного канала в оболочку разряда. Другими словами, рассматриваемый разряд по плотному газу распространяется благодаря процессам лучистой и электронной теплопроводностей.

Лучистая теплопроводность. Согласно [16], при достижении предельной температуры разряда энергии фотонов  $h\nu$  основной доли излучения его канала (~67%) заключены в интервале:

$$0.62I_1 \le h\nu \le 2.2I_1.$$

При этом число фотонов с энергиями в интервале  $I_1 \leq h\nu \leq 2.2I_1$  составляет ~40% от количества фотонов с энергиями в интервале  $0.62I_1 \leq h\nu \leq 2.2I_1$ . То есть в составе излучения разрядного канала имеются фотоны с энергиями порядка первого потенциала ионизации атома  $I_1$  и больше, а при достижении разрядом предельной температуры  $T_{\text{LIM}}$  в составе его излучения появляются фотоны с энергиями порядка второго потенциала ионизации атома  $I_2 \approx 2I_1$  и выше. Понятно, что такие фотоны излучения разрядного канала эффективно ионизуют и нагревают газ оболочки (вовлекаемый в разряд газ). При этом следует различать три случая поглощения атомами квантов с энергиями:  $h\nu \geq I_1, h\nu < I_1$  и  $h\nu \ll I_1$ .

Длина пробега фотонов  $l_{\nu}$  с энергиями  $h\nu \geq I_1$  составляет ~  $3 \cdot 10^{-3}$  см [16], что примерно на два порядка меньше радиуса разрядного канала  $R(l_{\nu} \ll R)$ . Это обстоятельство позволяет рассматривать оболочку как тонкий слой, где происходят ионизация и нагрев газа. Фотоны с энергиями  $h\nu < I_1$  в основном совпадают с энергиями возбужденных уровней атомов. Возбужденные атомы, согласно [22, 23], должны играть важную роль в радиационном переносе возбуждения и процессе ионизации газа. Среди этих возбужденных уровней в радиационном переносе возбуждения основную роль играют резонансновозбужденные уровни. Характерная длина пробега резонансного излучения составляет  $\sim 10^{-6} - 10^{-5}$  см [22]. В [16] показано, что резонансное излучение разрядного канала возбуждает газ в оболочке разряда, за и перед фронтом ударной волны, ускоряя процесс ионизации вовлекаемого в разряд газа. Выходящее из разряда излучение, энергия фотонов которого  $h\nu < I_1$ , создает протяженную волну возбуждения атомов в газе перед фронтом УВ.

Длина пробега фотонов  $l_{\nu}$  с энергиями  $h\nu \ll I_1$  намного превышает радиус разрядного канала  $(l_{\nu} \gg R)$ . Поэтому такие фотоны выходят за пределы разряда и могут участвовать только в ступенчатых процессах. В результате ступенчатых процессов возбужденные атомы должны ионизоваться, что и наблюдается на опыте [16, 23].

Таким образом, импульсный электрический разряд в газе при атмосферном давлении и выше для своего распространения по газу своим излучением ионизует и нагревает газ в оболочке, а также возбуждает, ионизует газ за и перед фронтом УВ.

Электронная теплопроводность. Вследствие лучистой теплопроводности в разряде температура плазмы по сечению разрядного канала распределена однородно [12, 13, 24], а в оболочке она снижается до температуры ионизованного газа за фронтом ударной волны. Поскольку характерная толщина оболочки мала ( $10^{-3}$  см) [13, 16, 24], то величина градиента температуры в ней становится большой ( $\geq 10^7$  K/см). При таких величинах градиента температуры необходимо учитывать поток тепловой энергии из разрядного канала в оболочку, переносимый в процессе электронной теплопроводности. Благодаря процессу лучистой теплопроводности возникает большой градиент температуры в оболочке, в результате чего увеличивается поток тепловой энергии, переносимый электронной теплопроводностью. Этот поток энергии поглощается в слое оболочки толщиной  $l_e \approx 7 \cdot 10^{-3}$  см [16], что практически совпадает с шириной зоны лучистого прогрева и ионизации газа оболочки фотонами с энергиями  $h\nu \geq I_1 : \Delta r \sim l_e \sim l_{\nu}$ . Это обстоятельство позволяет рассматривать оболочку как тонкий слой прогрева.

Итак, газ в оболочке разряда одновременно ионизуется и нагревается как потоком лучистой энергии из разрядного канала, так и потоком тепловой энергии, переносимой в процессе электронной теплопроводности. При этом зона ионизации и нагрева перемещается на новые слои более холодного газа, что можно интерпретировать как волновое движение некоторого тонкого фронта (по отношению к радиусу канала) ионизации и нагрева (ионизационная и тепловая волна).

2. Будем считать, что рассматриваемый импульсный разряд имеет цилиндрическую симметрию, его плазма является изотермической, а оболочка разряда – тонкой. Тогда, исходя из вышеизложенного механизма расширения разряда, из законов сохранения массы и энергии на фронте тепловой волны (для оболочки разряда) получим следующее уравнение:

$$S2\pi Rdt - \chi_e \nabla_r T2\pi Rdt = \left(\epsilon_C + \frac{p}{\rho_C}\right)\rho_C 2\pi RdR,\tag{2}$$

где  $S = \sigma_0 T_C^4$  – поток излучения с боковой поверхности разрядного канала, излучающего как черное тело с температурой  $T_C$ ,  $\sigma_0$  – постоянная Стефана–Больцмана,  $\chi_e \nabla_r T$ – поток тепловой энергии, отводимой электронной теплопроводностью плазмы через боковую поверхность разрядного канала в оболочку разряда,  $\nabla_r T$  – радиальный градиент температуры в оболочке разряда,  $\chi_e$  – эффективный коэффициент электронной теплопроводности,  $dM = \rho_C 2\pi R dR$  – масса газа, вовлекаемого в разряд единичной длины, через его оболочки за время dt,  $\rho_C$  – плотность плазмы в разрядном канале,  $\epsilon_C$  и p– удельная внутренняя энергия и давление плазмы разрядного канала. Согласно [25], величины  $\chi_e$ ,  $\epsilon_C$  и p равны:

$$\chi_e = \xi(Z) \frac{k(kT_e)^{5/2}}{\sqrt{m_e Z} e^4 \ln\Lambda},\tag{3}$$

$$\epsilon_C = \frac{3}{2} \frac{p}{\rho_C} + \sum_m \alpha_m (I_1 + I_2 + \dots + I_m) \frac{1}{m_a} \ \mathbf{\mu} \ p = (1 + \alpha_e) n_C k T_C, \tag{4}$$

где Z – заряд иона,  $m_e$  и e – масса и заряд электрона,  $T_e$  – температура электронов ( $T_e = T_C$ ), ln  $\Lambda$  – кулоновский логарифм,  $\xi(Z)$  – число, слабо зависящее от  $Z(\xi(1) = 0.95; \xi(2) = 1.5), Q_m = I_1 + I_2 + ... + I_m$  – энергия, необходимая для отрыва от атома m электронов ( $I_0 = 0$ ),  $m_a$  – масса атома,  $\alpha_e = n_e/n_C$  – степень ионизации плазмы разрядного канала,  $n_e$  – концентрация электронов,  $n_C$  – концентрация исходных атомов в разрядном канале,  $\alpha_m = n_m/n_C$  – доля m-кратно ионизованных атомов,  $n_m$  – концентрация m-кратно ионизованных атомов. Концентрации ионов различной кратности ионизации  $n_m$  связаны между собой условием сохранения числа атомов

$$\sum_{m} n_m = n_C, \ \sum_{m} \alpha_m = 1 \tag{5}$$

и сохранения числа зарядов

$$\sum_{m} mn_m = n_e, \ \sum_{m} m\alpha_m = \alpha_e.$$
(6)

Уравнение (2) является законом сохранения энергии для оболочки мощного импульсного электрического разряда в газе высокого давления. Он гласит: суммарная энергия, отводимая с боковой поверхности  $2\pi R$  цилиндрического разрядного канала единичной длины излучением и электронной теплопроводностью, расходуется на ионизацию, нагрев и сжатие вовлекаемого в разряд газа при расширении канала на величину dR за время dt. Другими словами, выходящая из поверхности разрядного канала энергия излучения и отводимая от него электронной теплопроводностью тепловая энергия возвращаются обратно в канал в виде внутренней энергии ионизованного газа и работы сжатия вовлекаемого в разряд газа.

Из экспериментальных данных [4, 10, 13, 26] следует, что при достижении предельной температуры рассматриваемого разряда атомы в разрядном канале практически ионизованы двукратно (Z = 2). В этом случае из (4), (5) и (6) следует, что

$$\xi(2) = 3/2, \ \alpha_e \approx 2, \ \alpha_1 = 0, \ \alpha_2 = 1,$$
(7)

так как  $\alpha_1 + \alpha_2 = 1$ . С учётом (7) из (4) для удельной энтальпии  $\left(\epsilon_C + \frac{p}{\rho_C}\right)$  и давления плазмы разрядного канала получим следующие выражения:

$$\left(\epsilon_C + \frac{p}{\rho_C}\right) = \frac{5}{2}\frac{p}{\rho_C} + \frac{I_1 + I_2}{m_a} \quad \text{if } p = 3n_C k T_C.$$

$$\tag{8}$$

В работе [21] для начальной стадии развития такого разряда из энергетического баланса разрядного канала получено уравнение для его радиуса с учётом затраты на ионизацию вовлекаемого в разряд газа, джоулева нагрева плазмы, энергии магнитного поля разряда и его работы, совершаемой против давления окружающего газа. Из этого уравнения получена следующая формула для начальной скорости расширения разрядного канала:

$$V_{\rm in} = \frac{dR}{dt} = \sqrt{\frac{B_0}{2A_0} \left(\sqrt{1+2\Sigma} - 1\right)},\tag{9}$$

которая согласуется с экспериментальными данными работ [12, 14, 21, 27–29].

Таким образом, в уравнениях (2) и (8) становятся известными скорость расширения dR/dt и давление p, так как вследствие лучистой теплопроводности в разряде давление плазмы p по сечению разряда однородно, должно совпадать с давлением газа  $p_{SW}$  за фронтом ударной волны (УВ), и согласно [21], оно для сильной УВ равно:

$$p = p_{\rm SW} = \frac{\gamma_0 + 1}{2} \rho_0 \left(\frac{dR(t)}{dt}\right)^2. \tag{10}$$

17



Рис. 1: Зависимость относительной температуры разрядного канала  $\frac{\theta}{I_1 + I_2}$  от безразмерного комплекса  $\Xi$ . Кружочки  $\bigcirc$  – экспериментальные данные работ [4, 7], треугольники  $\triangle$  – экспериментальные данные работ [10, 13],  $\Box$  – экспериментальные данные работы [17].

Используя (3) и (8), из уравнения (2) получим следующее уравнение для температуры  $T_C$ :

$$\sigma_0 T_C^5 + \frac{3k^{7/2} \nabla_r T}{4\sqrt{m_e} e^4 \ln\Lambda} T_C^{7/2} = \frac{5}{2} p\left(\frac{dR}{dt}\right) + \frac{(I_1 + I_2)}{3k} p\left(\frac{dR}{dt}\right).$$
(11)

В этом уравнении величину градиента температуры  $\nabla_r T$  определим из эксперимента. Умножая уравнение (11) на величину  $\frac{k^5}{\sigma_0(I_1+I_2)^5}$  и используя соотношение (10), приведём его к следующему безразмерному виду относительно функции  $x = \left(\frac{kT_C}{I_1+I_2}\right)$ :

$$x^{5} - ax^{7/2} - \frac{5}{2}bx - \frac{1}{3}b = 0,$$
(12)

где

$$a = \frac{3\nabla_r T k^5}{4\sigma_0 \sqrt{m_e} e^4 \ln\Lambda (I_1 + I_2)^{3/2}}, \ b = \frac{k^4 (\gamma_0 + 1)\rho_0}{2\sigma_0 (I_1 + I_2)^4} \left[\frac{B_0}{2A_0} (\sqrt{1 + 2\Xi} - 1)\right]^{3/2}, \ \nabla_r T < 0.$$

| Род газа | $T_{ m LIM}, K,$ эВ | $\Xi_{\rm LIM}$ | $I_1(I_{\text{eff}}),  \Im \mathbf{B}$ | <i>I</i> <sub>2</sub> , эВ | $\frac{kT_{\rm LIM}}{I_1 + I_2}$ |       |
|----------|---------------------|-----------------|----------------------------------------|----------------------------|----------------------------------|-------|
| Xe       | 27000-29000         | 2.0             | 12.13                                  | 21.20                      | 0.072                            |       |
|          | (2.33 - 2.5)        |                 |                                        |                            |                                  | 0.074 |
|          | 30000               |                 |                                        |                            | 0.076                            |       |
| Kr       | 32000(2.76)         | 2.6             | 13.90                                  | 24.60                      | 0.071                            |       |
|          | 34000(2.93)         |                 |                                        |                            | 0.076                            | 0.073 |
| Ar       | 35000(3.0)          | 4.0             | 15.76                                  | 27.60                      | 0.070                            |       |
|          | 37000 (3.187)       |                 |                                        |                            | 0.074                            | 0.072 |
| воздух   | 43000               | 5.6             | 16.0                                   | 32.36                      |                                  | 0.076 |
|          | (3.7)               |                 |                                        | атом                       |                                  |       |
|          |                     |                 |                                        | кислорода                  |                                  |       |
| $N_2$    | 41000               |                 | 16.5                                   | 29.60                      |                                  | 0.077 |
|          | (3.53)              |                 |                                        |                            |                                  |       |
| Ne       | 52000 (4.48)        | 6.5             | 21.56                                  | 40.96                      |                                  | 0.072 |
| He       | 67000 -             | 8.0             | 24.59                                  | 54.42                      | 0.073                            |       |
|          | 71000               |                 |                                        |                            | 0.077                            | 0.075 |
|          | (5.77-6.12)         |                 |                                        |                            |                                  |       |

Таблица

То есть температура разрядного канала определяется начальными интегральными характеристиками импульсного разряда и газа – безразмерным комплексом  $\Xi$ . Из этого уравнения следует, что при  $\Xi \gg 1$  зависимость температуры разрядного канала от начальных характеристик импульсного разряда и газа слабая. Уравнение (12) решалось численно для газов, приведенных в таблице. Получены численные решения уравнения (12) (зависимость  $x = f(\Xi)$ ) для разрядов в ксеноне, криптоне, аргоне, неоне, гелии, воздухе и азоте. На рис. 1 приведены результаты для ксенона, воздуха и гелия, остальные лежат между ними. Видно, что для мощных разрядов в указанных газах при выполнении условия  $\Xi \ge \Xi_{\text{LIM}}$  они имеют практически одинаковую относительную температуру  $x = \left(\frac{kT}{I_1 + I_2}\right) \approx 0.074$ , что совпадает с универсальной зависимостью (1), установленной экспериментально в работе [17].

Считаю своим долгом выразить благодарность А.А.Рухадзе за ценные обсуждения.

## ЛИТЕРАТУРА

- [1] G. Glaser, Optik 7, 33 (1950).
- [2] G. Glaser, Naturforsch **6a**, 706 (1951).
- [3] К. С. Вульфсон, И. Ш. Либин, Ф. А. Черная, Изв. АН СССР, сер.физическая, 19, 61 (1955).
- [4] М. П. Ванюков, А. А. Мак, ДАН СССР **123**(6), 1022 (1958).
- [5] Ф. А. Черная, Оптика и спектроскопия **4**(6), 725 (1958).
- [6] М. П. Ванюков, А. А. Мак, УФН **66**(2), 301 (1958).
- [7] М. П. Ванюков, А. А. Мак, А. И. Садыков, ДАН СССР **135**(3), 557 (1960).
- [8] H. Fisher and W. Schwanzer, Applied Optics 8, 697 (1969).
- [9] Н. Г. Басов, Б. Л. Борович, В. С. Зуев и др., ЖТФ **38**, 2079 (1968).
- [10] В. П. Кирсанов, Диссертация на соиск. уч. степ. к.т.н (М., ФИАН СССР, 1970).
- [11] К. Фольрат, Искровые источники и высокочастотная искровая кинематография.
   В сб.: Физика быстропротекающих процессов, Т. 1 (Мир, М., 1971), с. 98.
- [12] А. Ф. Александров, А. А. Рухадзе, Физика сильноточных электроразрядных источников света (Атомиздат, М., 1976).
- [13] И. С. Маршак, А. С. Двойников, В. П. Кирсанов и др., Импульсные источники света, под ред. И. С. Маршака (Энергия, М., 1978).
- [14] Б. Л. Борович, В. Б. Розанов, В. С. Зуев и др., Сильноточные излучающие разряды и газовые лазеры с оптической накачкой В сб.: Итоги науки и техники, Сер. Радиотехника (ВИНИТИ, Москва, 1978), с. 79.
- [15] А. С. Камруков, Н. П. Козлов, Ю. С. Протасов, Плазмодинамические источники излучения высокой спектральной яркости. В кн.: "Радиационная плазмодинамика". Т. 1. (Энергоатомиздат, М., 1991), с. 10.
- [16] У. Юсупалиев, Краткие сообщения по физике ФИАН, **36**(8), 33 (2009).
- [17] У. Юсупалиев, Краткие сообщения по физике ФИАН, **34**(9), 28 (2007).
- [18] С. И. Брагинский, ЖЭТФ **34**, 1548 (1958).
- [19] Ю. К. Бобров, В. В. Вихрев, И. И. Федотов, Физика плазмы 14(10), 1222 (1988).
- [20] С. Н. Колгаткин, ЖТФ **65**(7), 10 (1995).
- [21] У. Юсупалиев, Краткие сообщения по физике ФИАН, **36**(8), 44 (2009).
- [22] Б. М. Смирнов, Возбужденные атомы (Энергоатомиздат, М., 1982).
- [23] Л. М. Биберман, В. С. Воробьев, И. Т Якубов, Кинетика неравновесной низкотемпературной плазмы (Наука, М., 1982).
- [24] Ю. К. Бобров, ЖТФ 44, 2340 (1974).
- [25] Я. Б. Зельдович, Ю. П. Райзер, Физика ударных волн и высокотемпературных гидродинамических явлений (Наука, М., 1966).

- [26] Г. Г. Долгов, С. Л. Мандельштам, ЖЭТФ 24(6), 691 (1953).
- [27] К. С. Вульфсон, И. Ш. Либин, ЖЭТФ **21**, 510 (1951).
- [28] Н. М. Гегечкори, ЖЭТФ **21**, 493 (1951).
- [29] Н. Г. Басов, Б. Л. Борович, В. Б. Розанов и др., ЖТФ 40, 516 (1970).

Поступила в редакцию 12 ноября 2009 г.