УДК 538.9

ОПТИЧЕСКИЕ СВОЙСТВА ПЛЕНОК a-C:H:Si И ИХ СТРУКТУРНЫХ МОДИФИКАЦИЙ

В. Д. Фролов, В. А. Герасименко, С. М. Пименов

Приводятся данные измерений спектров отражения света видимого и УФ-диапазона алмазоподобных пленок а-C:H:Si и их структурных модификаций, возникающих при электрических воздействиях на пленки в сканирующем зондовом микроскопе (C3M)-литографе. Численные оценки экспериментальных данных с учетом эффектов интерференции показывают, что модификация носит объемный характер и вызывает изменение показателя преломления материала от п ~ 2.2 до п ~ 1.5. Уменьшение оптической плотности модифицированного материала связывается с повышением пористости пленки в зоне СЗМ-воздействий.

Ключевые слова: оптические свойства пленок, a-C:H:Si, спектры отражения, алмазоподобные пленки.

Благодаря высокой механической прочности и адгезии к различным подложкам, химической стойкости, прозрачности в видимом и УФ-диапазоне, алмазоподобные пленки a-C:H:Si являются практически идеальным материалом для покрытий в различных микро- и наноэлектромеханических системах [1, 2]. Наряду с этим, пленки a-C:H:Si обладают уникальной способностью к модификации под действием электрического поля зонда сканирующего зондового микроскопа (C3M)-литографа, которая внешне проявляется в образовании конусообразных выступов на поверхности пленок [3, 4]. Процесс носит стабильный и воспроизводимый характер, что позволяет формировать массивы конусов с различным топологическим рисунком. Представляет интерес определить оптические характеристики модифицированных областей пленок a-C:H:Si.

Эксперименты выполнены с использованием спектроскопии локального отражения света. Сравнительные измерения спектров локального отражения исходных пленок и

Учреждение Российской академии наук Институт общей физики им. А. М. Прохорова РАН, 119991 Москва, ул. Вавилова, 38.

их наноструктурных модификаций проведены на стенде на основе оптического микроскопа с объективом x10, апертурой 0.3. Размер площадки, с которой детектировался оптический сигнал, составил ~30 мкм. Источником света являлась ксеноновая лампа. Спектральный сигнал измерялся в диапазоне длин волн $\lambda = 370 - 800$ нм. Для регистрации спектров отражения исходной пленки и сформированных наноструктур в тубус микроскопа вместо окуляра вставлялся объектив, жестко соединенный с кварцевым оптическим волокном, что обеспечивало максимально эффективный сбор излучения на торце волокна. Свет по волокну доставлялся к спектрометру. Калибровка выходного сигнала спектрометра осуществлялась путем измерения спектра отражения от кремниевой подложки, после чего вычислялись отношения коэффициентов отражения пленки и наноструктуры к коэффициенту отражения кремния.

Исходными образцами для формирования наноструктур являлись пленки a-C:H:Si, нанесенные на кремниевые подложки методом плазмохимического осаждения паров полифенилметилсилоксана [5]. Толщина исходных пленок (d) и их оптические параметры – показатель преломления $n(\lambda)$ и коэффициент экстинкции $k(\lambda)$ – определялись на основании данных спектральной эллипсометрии (методика спектральной эллипсометрии подробно описана в работе [6]). Диаметр выступов модифицированной области и их высота относительно поверхности пленки измерялись в C3M.

Рис. 1: Спектры показателя преломления n (a) и коэффициента поглощения k (b) исходной пленки.

Основные результаты экспериментов состоят в следующем. Показатель преломления исходных пленок в диапазоне $\lambda = 370 - 800$ нм лежит в пределах n = 2.13 - 2.2, коэффициент экстинкции $k \leq 0.22$ (см. рис. 1). Отметим, что определенные оптические параметры пленок a-C:H:Si находятся в согласии с данными работ [7, 8].

Рис. 2: Спектральная зависимость $R_{\rm film}/R_{\rm Si}$ для исходной пленки.

На рис. 2 представлена спектральная зависимость $R_{\rm film}/R_{\rm Si}$ для пленки толщиной d = 235 нм. Для сравнения на рис. 2 показан расчетный спектр $R_{\rm film}/R_{\rm Si}$ (линия в сером цвете). Как видно на рис. 2, экспериментальная и расчетная зависимости находятся в хорошем согласии. Ход спектральной зависимости обусловлен интерференцией падающей и отраженной от подложки волн, положение экстремумов при $\lambda = 400$, 500 и 670 нм определяется известным соотношением $m\lambda/4nd = 1$, где m – нечетные числа для максимумов спектра. В данном случае m = 5 при $\lambda = 400$ нм; m = 4 при $\lambda = 500$ нм и m = 3 при $\lambda = 670$ нм.

На рис. 3 представлена спектральная зависимость $R_{\text{test}}/R_{\text{Si}}$ для тестовой структуры, сформированной на этой пленке в виде концентрических колец с плотной упаковкой элементов-выступов (показана на рис. 3 справа). Диаметр выступов составляет ~0.6 мкм, высота $h \sim 40$ нм, и полная толщина пленки в зоне модификации $d_m = d + h = 275$ нм. Структура такого типа использована для определения оптических параметров модифицированного материала пленки. При анализе полученных результатов модифицированный материал представлялся в виде слоя с однородными оптическими свойствами. Как видно из приведенных на рис. 3 экспериментальных данных, на спектральной зависимости отчетливо наблюдаются два экстремума, связанные с интерференцией света: максимум при $\lambda_s \sim 410$ нм и минимум при $\lambda \sim 550$ нм. Значения длин волн в максимуме и минимуме находятся в соотношении ~3/4, откуда при условии $m\lambda = \text{const}$ имеем m = 4 в максимуме и m = 3 в минимуме. Более подробные расчеты сделаны в предположении, что трансформация материала пленки произошла

Рис. 3: Спектр отражения тестовой структуры (вид тестовой структуры в оптическом микроскопе показан справа).

на глубину $d_s < d_m$, т.е. часть материала пленки толщиной $\Delta d = d_m - d_s$ осталась вблизи подложки в исходном состоянии.

Расчетная спектральная зависимость $R_{\text{test}}/R_{\text{Si}}$ показана на рис. 3 линией в сером цвете. Наилучшее соответствие между экспериментальным и расчетным спектрами получено при значениях толщины модифицированного слоя $d_s = 260$ нм, показателя преломления $n_s = 1.5$ и коэффициента экстинкции $k_s = 0$.

Уменьшение плотности элементов структур приводит к существенному изменению спектра отражения. В качестве примера на рис. 4 представлены результаты экспериментов со структурами различной топологии: (1) концентрических колец с зазором $\Delta = 0.3 - 3$ мкм между кольцами; (2) серии полос – линейной решетки с периодом $\Delta \sim 1.5$ мкм (показаны на рис. 4 справа). В обоих случаях степень заполнения площади наноструктур выступами составляла ~50%. Спектральные зависимости $R_{\rm str}/R_{\rm Si}$ наноструктур приведены на рис. 4 (графики 1 и 2 соответственно). Для анализа экспериментальных данных проведен расчет спектров в приближении геометрической оптики. Полагалось, что интенсивность отраженного от наноструктур света есть арифметическая сумма интенсивностей световых волн, отраженных от необработанных (50% площади) и модифицированных (50% площади) участков поверхности, т.е. расчетный спектр $R_{\rm cal}(\lambda) = (R_{\rm film} + R_{\rm test})/2$. Затем спектр $R_{\rm cal}(\lambda)$ нормировался на $R_{\rm Si}$, и на основании данных расчета $R_{\rm cal}/R_{\rm Si}$ было вычислено отношение $R_{\rm str}/R_{\rm cal}$. Результаты вычислений

Рис. 4: Спектральные зависимости наноструктур (вид структур в оптическом микроскопе показан справа): 1,2 – отношения $R_{\rm str}/R_{\rm Si}$ коэффициентов отражения наноструктур и кремния; 3,4 – отношения $R_{\rm str}/R_{\rm cal}$ коэффициентов отражения наноструктур к расчетным коэффициентам отражения, вычисленным в приближении геометрической оптики.

для структуры 1 и структуры 2 представлены на рис. 4 кривыми 3 и 4 соответственно (для наглядности хода кривых при вычислениях использована операция сглаживания экспериментальных зависимостей $R_{\rm str}/R_{
m Si}$).

Как следует из хода зависимостей $R_{\rm str}/R_{\rm cal}$, наноструктуры проявляют значительно более высокую отражательную способность в диапазоне $\lambda = 550 - 700$ нм, чем это вытекает из расчетов в приближении геометрической оптики. Максимальное отношение $R_{\rm str}/R_{\rm cal}$ находится при $\lambda_{\rm max} \sim 600$ нм. Характерно, что $\lambda_{\rm max}$ по величине совпадает с линейным размером выступов. Данное обстоятельство позволяет связать наблюдаемый эффект с интерференцией световых волн, отраженных от боковых границ модифицированных областей.

Суммируя результаты экспериментов, можно заключить, что интерференционные эффекты играют определяющую роль в отражении света от исходных пленок a-C:H:Si и их структурных модификаций. Учет интерференции в спектрах отражения позволяет установить, что процесс модификации охватывает практически весь объем пленки a-C:H:Si в зоне C3M-воздействий. Имеются также основания для выводов о механизме модификации. Ранее нами получены экспериментальные свидетельства, что под действием электрического поля зонда C3M пленки проявляют способность к перестройке атомной структуры, которая сопровождается их карбонизацией, формированием sp³связанного углерода и упорядочением sp²-связанного углерода, т.е. возникновением более совершенной атомной структуры, чем у исходного алмазоподобного материала [3]. Следовательно, оптическая плотность материала при модификации должна была бы возрастать. В действительности, как показали эксперименты, оптическая плотность материала существенно уменьшается. Наиболее вероятная причина этого явления – повышение пористости пленки в зоне СЗМ-воздействий. Предполагаемый механизм образования пор – выделение водорода в объем пленки a-C:H:Si в ходе ее структурной перестройки. Отметим, что аналогичный процесс – выделение избытка водорода в объем пленки a-C:H:Si в ходе ее выращивания – наблюдался в работе [9].

Работа выполнена при поддержке гранта РФФИ № 09-02-01029.

ЛИТЕРАТУРА

- [1] J. Choi, M. Kawaguchi, T. Kato, M. Ikeyama, Microsyst. Technol., 13, 1353 (2007).
- [2] K. Oguri, T. Arai, Surf. Coat. Technol. 47, 710 (1991).
- [3] G. G. Kirpilenko, E. Y. Shelukhin, V. D. Frolov, et al., Diamond Relat. Mater. 15, 1147 (2006).
- [4] V. D. Frolov, E. V. Zavedeev, S. M. Pimenov, et al., Diamond Relat. Mater. 16, 1218 (2007).
- [5] V. K. Dmitriev, V. N. Inkin, G. G. Kirpilenko, et al., Diamond Relat. Mater. 10, 1007 (2001).
- [6] V. I. Kovalev, A. I. Rukovishnikov, P. I. Perov, et al., J. Communications Technology and Electronics 44, 1296 (1999).
- [7] N. Kato, H. Mori, N. Takahashi, Phys. Stat. Sol. (C) 5, 1117 (2008).
- [8] X. Zhang, W. H. Weber, W. C. Vassell, et al., J. Appl. Phys. 83, 2820 (1998).
- [9] G. A. Abbas, P. Papakonstantinou, J. A. McLaughin, et al., J. Appl. Phys. 98, 103505 (2005).

Поступила в редакцию 20 апреля 2010 г.

УДК 621.383

ВЕРОЯТНОСТНЫЕ ХАРАКТЕРИСТИКИ ПРОЦЕССОВ ДЕТЕКТИРОВАНИЯ КОРОТКИХ СВЕТОВЫХ ИМПУЛЬСОВ И ЕДИНИЧНЫХ ФОТОНОВ

С. Л. Виноградов, Т. Р. Виноградова, В. Э. Шубин, Д. А. Шушаков,

К. Ю. Ситарский

Одной из важнейших задач при детектировании слабых световых импульсов является определение точного значения времени прихода сигнала. Фотодетекторы, способные регистрировать единичные фотоны, характеризуются в этом случае двумя основными параметрами: квантовой эффективностью детектирования и разбросом времен прихода. В работе предложена единая методика измерения этих параметров на основе вероятностного распределения времен прихода, позволяющая выделять характеристики однофотонных процессов при подаче многофотонных световых импульсов и в условиях больших темновых шумов, что представляется актуальным, в частности, при работе с твердотельными фотоэлектронными умножителями.

Ключевые слова: твердотельный ФЭУ, вероятность детектирования, квантовая эффективность, разброс времён.

Введение. Детектирование малофотонных импульсов света и единичных фотонов было и остается одной из самых сложных задач для фотоприемников. В таких широко распространенных типах фотодетекторов, как лавинный фотодиод (ЛФД), вакуумный фотоэлектронный умножитель (ФЭУ) и микроканальная пластина эта задача решается за счет очень высокого коэффициента умножения фотоэлектронов, что позволяет выделить одноэлектронный сигнал из шумов. Разработанный недавно новый тип фотодетекторов – твердотельный ФЭУ (ТФЭУ) или Solid State Photomultiplier (SSPM) – сочетает высокий коэффициент умножения с беспрецедентно низким шум-фактором

Учреждение Российской академии наук Физический институт им. П.Н. Лебедева РАН, 119991, Москва, Ленинский пр-т, 53; e-mail: vin@sci.lebedev.ru.