УДК 539.122.17:548

МНОЖЕСТВЕННОСТЬ ЗАРЯЖЕННЫХ ЧАСТИЦ В ЛИВНЯХ, ОБРАЗОВАННЫХ ГАММА-КВАНТАМИ В ОРИЕНТИРОВАННОМ КРИСТАЛЛЕ ВОЛЬФРАМА

В. А. Басков¹, В. В. Ким¹, Б. И. Лучков², В. Ю. Тугаенко², В. А. Хабло¹

Показано увеличение в ~2 раза средней множественности заряженных частиц в электромагнитных ливнях, инициированных γ -квантами с энергиями 9–26 ГэВ в ориентированном вдоль оси (111) кристалле вольфрама толщиной 1 мм (T = 77 K) по сравнению с разориентированным.

Ключевые слова: электромагнитные ливни, заряженные частицы, ориентированный кристалл.

Электромагнитные ливни от γ -квантов и электронов, развивающиеся в ориентированных кристаллах, отличаются от ливней в разориентированных кристаллах и аморфном веществе. Отличие обусловлено разным числом фотонов N_{γ} и заряженных частиц N_e с соответствующими величинами энергий на заданной глубине развития ливня. Теория каскадных ливней в кристаллах развита давно [1, 2], однако экспериментальное определение N_{γ} и N_e до сих пор является актуальной задачей. Особенно важно определение множественности в ливнях, выходящих из ориентированных кристаллов и инициированных γ -квантами, поскольку существует возможность практического использования особенностей развития ливней в ориентированных кристаллах при создании новых типов γ -детекторов в γ -астрономии и на ускорителях при создании кристаллических мишеней для получения высокоинтенсивных пучков электронов и позитронов [3].

Настоящая работа представляет экспериментальные результаты измерения средней множественности заряженных частиц N_e , выходящих из кристалла вольфрама, вызванных γ -квантами с энергией 9–26 ГэВ [4, 5]. Работа была выполнена на установке "Каскад" на электронном канале ускорителя ИФВЭ. Использовался кристалл вольфрама толщиной 1 мм, охлажденный жидким азотом до температуры T = 77 К. Ориента-

¹Учреждение Российской академии наук Физический институт им. П. Н. Лебедева РАН, 119991, Москва, Ленинский пр-т, 53; e-mail: baskov@x4u.lebedev.ru.

²Национальный исследовательский ядерный университет "МИФИ", 115549, Москва.

ция кристалла осуществлялась вдоль оси (111). Мозаичность кристалла составляла 1 мрад [6].

Метод определения множественности заряженных частиц в ливне от γ -квантов заключался в том, что за кристаллом помещался пластиковый сцинтилляционный счетчик толщиной 5 мм, сигнал с которого подавался на амплитудный анализатор. По величине сигнала делалось заключение о величине средней ионизации и о среднем числе заряженных частиц в ливне, выходящих из кристалла. Число фотонов электромагнитного ливня, давших конверсию e^+e^- -пар на толщине счетчика, составляло ~1%.

Рис. 1: Ориентационные зависимости средней множественности заряженных частиц N_e в ливне от γ -квантов в кристалле вольфрама толщиной 1 мм ($\langle 111 \rangle, T =$ 77 K): 1 – $E_{\gamma} = 10.0 \ \Gamma \ni B; 2 - E_{\gamma} = 15.1 \ \Gamma \ni B; 3 - E_{\gamma} = 20.3 \ \Gamma \ni B; 4 - E_{\gamma} = 26.0 \ \Gamma \ni B.$

На рис. 1 показаны ориентационные зависимости средней множественности заряженных частиц в ливне (N_e) для четырех энергий γ -квантов. Из рисунка видно, что при всех указанных энергиях γ -квантов по мере уменьшения угла ориентации кристалла Θ (Θ – угол между импульсом γ -квантов и осью (111)) средняя множественность заряженных частиц в ливне растет. При угле $\Theta = 1.2$ мрад множественность заряженных частиц в ливне по сравнению с разориентированным кристаллом ($\Theta = 22.8$ мрад) увеличивается в \approx 1.7 раза для всех указанных энергий γ -квантов. В точке $\Theta = 0$ измерения проведены не были. Однако, если считать, что зависимость N_e симметрична относительно точки $\Theta = 0$ и, не изменяя наклона кривой, экстраполировать зависимость N_e в диапазоне $\Delta \Theta = 1$ –3 мрад в точку $\Theta = 0$, можно предположить, что средняя множественность достигает максимума при $\Theta = 0$.

Рис. 2: Изменение ширины ориентационной зависимости $\Delta \Theta$ от энергии γ -квантов E_{γ} , падающих на кристалл вольфрама толщиной 1 мм ((111), T = 77 K); $1 - \Delta \Theta$ средней множественности заряженных частиц N_e ; $2 - \Delta \Theta$ среднего энерговыделения ливня (ΔE) в свинцово-сцинтилляционном счетчике.

Изменение ширины ориентационной зависимости N_e в ливне, определяемой как ширина ориентационной зависимости на половине высоты, от энергии γ -квантов (при указанной экстраполяции) показана на рис. 2 (кривая 1). Она меньше ширины ориентационной зависимости энерговыделения ливня ($\langle \Delta E \rangle$) в свинцово-сцинтилляционном счетчике полного поглощения типа "сэндвич" толщиной в 1.2 радиационной длины, стоящем далее за сцинтилляционным счетчиком (кривая 2) [7]. Например, при энергии γ -квантов $E_{\gamma} = 20$ ГэВ ширина ориентационной зависимости N_e составляет ≈ 3.5 мрад, а ширина ориентационной зависимости энерговыделения $\langle \Delta E \rangle$ составляет ≈ 8.5 мрад. Уширение можно объяснить вкладом в ширину ориентационной зависимости $\langle \Delta E \rangle$ ширины ориентационной зависимости среднего числа фотонов в ливне $\langle N_{\gamma} \rangle$, которая практически равна ширине ориентационной зависимости излучения e^+e^- -пар [8]. Рис. 2 также показывает, что величины ширин ориентационных зависимостей $\Delta \Theta$ изменяются с энергией γ -квантов как $\Delta \Theta = k \cdot E_{\gamma}^{-1/2}$, где k – коэффициент пропорциональности, E_{γ} – энергия γ -квантов.

Рис. 3: Зависимость средней множественности заряженных частиц в ливне N_e от энергии γ -квантов E_{γ} и угла ориентации Θ (кристалл вольфрама толщиной 1 мм, $\langle 111 \rangle$, T = 77 K): $\circ - \Theta = 1.2$ мрад; $\bullet - 22.8$ мрад.

Зависимость средней множественности заряженных частиц в ливне от энергии γ квантов для разориентированного кристалла ($\Theta = 22.8$ мрад) и угла, близкого к углу ориентации кристалла ($\Theta = 1.2$ мрад), показана на рис. 3. Из рисунка видно, что при толщине кристалла 1 мм средняя множественность заряженных частиц, начиная с $E_{\gamma} \approx 15$ ГэВ, практически не меняется и составляет ~3 и ~5 для разориентированного и ориентированного кристалла соответственно. Результаты хорошо согласуются с данными работ [9].

Таким образом, экспериментальные результаты показывают увеличение выхода среднего числа заряженных частиц из ориентированного кристалла по сравнению с разориентированным при развитии в нем ливня от *γ*-квантов.

Авторы выражают благодарность Е. И. Тамму и Е. И. Малиновскому за поддержку работы; В. И. Сергиенко за практическое руководство и организацию работ.

ЛИТЕРАТУРА

[1] В. Н. Байер, В. М. Катков, В. М. Страховенко, Электромагнитные процессы при высокой энергии в ориентированных монокристаллах (Изд-во "Наука" СО АН СССР, г. Новосибирск, 1989).

- [2] А. И. Ахиезер, Н. Ф. Шульга, ЖЭТФ 85, 94 (1983).
- [3] В. А. Басков, В. В. Ким, Б. И. Лучков и др., ПТЭ 6, 10 (1996).
- [4] В. А. Басков, В. Б. Ганенко, В. А. Гущин и др., в: "Материалы Всесоюзного совещания, "Проблемы применения эффектов каналирования частиц кристаллами в физике высоких энергий" (Протвино, ИФРЭ, 1991), стр. 103.
- [5] В. А. Басков, В. В. Ким, Б. И. Лучков и др., Препринт ФИАН № 9 (Москва, ФИАН, 2005).
- [6] В. А. Басков, В. В. Ким, И. В. Коноров и др., ПТЭ 5, 58 (1990).
- [7] В. А. Басков, В. Б. Ганенко, Б. Б. Говорков и др., Письма в ЖЭТФ 52, 1082 (1990).
- [8] V. A. Baskov, V. B. Ganenko, B. B. Govorkov, et al., Preprint FIAN 143, (Moscow, LPI, 1988).
- [9] R. Moore, M. A. Parker, A. Baurichter, et al., Nucl. Instrum. Meth. in Phys. Res. 119B, 149 (1996).

Поступила в редакцию 29 апреля 2010 г.