УДК 533.9

## МИКРОВОЛНОВОЙ И ОПТИЧЕСКИЙ ПРОБОИ ГАЗОВ И ГЕНЕРАЦИЯ ГАРМОНИК ПОЛЯ

М. В. Кузелев, О. А. Омаров, А. А. Рухадзе

В работе исследуется пробой газов в сильных электромагнитных полях микроволнового и оптического диапазонов частот. Под сильными полями понимаются поля, энергия осцилляций электронов в которых превосходит потенциал ионизации атомов газа, но которые все еще малы для полевой ионизации атомов. В таких полях частота неупругих столкновений электронов больше частоты упругих столкновений. Как следствие, процесс ионизации атомов сопровождается эффективной генерацией высоких гармоник поля.

Ключевые слова: микроволновой и оптический пробои газов, гармоники, ионизация. 1. Введение. Постановка задачи. Речь пойдет об ионизации атомов газа в поле элек-

тромагнитной волны,

$$\vec{E}(\vec{r},t) = \vec{E}_0 \cos(\omega_0 t - \vec{k}\vec{r}) \tag{1}$$

большой амплитуды в условиях, когда выполнено условие

$$v_E = \frac{eE_0}{m\omega_0} >> v_i = \sqrt{\frac{2I_i}{m}}.$$
(2)

Здесь  $\omega_0$  – частота, а  $\vec{k}$  – волновой вектор волны,  $I_i \approx 10 - 15$  eV – потенциал ионизации атома, е и m – заряд и масса электрона.

В микроволновой области частот  $\omega_0 \simeq 10^{11} \text{ c}^{-1}$  условие (2) выполняется в полях  $E_0 > 10^4 \text{ V/cm}$  или при плотностях мощности излучения  $P = E_0^2/8\pi > 10^5 \text{ W/cm}^2$ . Это поле на много порядков меньше атомного поля ( $E_a \simeq 8 \cdot 10^9 \text{ V/cm}$ ), а поэтому о полевой ионизации атомов газа не может быть и речи. Ионизация атомов газа будет происходить электронным ударом непосредственно осциллирующими в поле волны электронами.

Учреждение Российской академии наук Институт общей физики им. А.М. Прохорова РАН; 119991, Москва, ул. Вавилова, 38; e-mail: rukh@fpl.gpi.ru.

Несколько иная ситуация имеет место в оптической области частот  $\omega_0 \sim 10^{15}$  с<sup>-1</sup>. Условие (2) при этих частотах выполняется в полях  $E_0 \geq 10^8$  V/cm или, что то же самое, при плотностях мощности излучения  $P = cE_0^2/8\pi \geq 10^{13}$  W/cm<sup>2</sup>. Это поле в 50 раз меньше атомного поля, а мощность в 2500 раз меньше атомной мощности ( $P_a \simeq 3 \cdot 10^{16}$  W/cm<sup>2</sup>). В полях, сравнимых и выше атомного поля, ионизация атомов становится чисто полевой и происходит практически мгновенно (менее чем за полпериода поля излучения). Поэтому, говоря об оптическом пробое, для нас более подходящим является пробой в поле CO<sub>2</sub> дазерного излучения с частотой  $\omega_0 \approx 2 \cdot 10^{14}$  с<sup>-1</sup>. В таком излучении условие (2) выполняется в полях  $E_0 \geq 2 \cdot 10^7$  V/cm (или при плотностях мощности  $P \geq 4 \cdot 10^{11}$  W/cm<sup>2</sup>), что намного меньше атомного поля, а следовательно, и область применимости полученных ниже результатов намного шире.

2. Функция распределения электронов в процессе ионизации газа. Прежде чем перейти к решению сформулированной задачи ионизации газа в сильных полях, получим функцию распределения электронов ионизации. Такая функция впервые была получена в работе [1] и строго обоснована в [2]. Ограничиваясь полями меньше атомного поля, мы, тем самым, рассматриваем нерелятивистское движение электрона в поле волны. Поэтому в выражении (1) мы можем пренебречь пространственной зависимостью поля волны и записать скорость движения электрона в поле волны в виде

$$\vec{v} = \frac{e\vec{E}_0}{m\omega_0}(\sin\omega_0 t - \sin\varphi).$$

Здесь  $\varphi$  – фаза поля в момент рождения электрона.

Равновесное кинетическое уравнение, описывающее функцию распределения электронов в процессе ионизации газа, при этом записывается в виде

$$\frac{\partial f_0}{\partial t} + e\vec{E}_0\cos(\omega_0 t + \varphi)\frac{\partial f_0}{\partial \vec{p}} = n_0 w_i \delta(\vec{p}).$$
(3)

Здесь  $n_0$  – плотность нейтральных частиц газа,  $w_i$  – вероятность ионизации

$$w_i = \int \nu_{\rm in}(p') f_0(\vec{p}', t) d\vec{p},\tag{4}$$

где  $\nu_{in}(p) = n_0 \sigma(v) v$  – частота ионизационных столкновений электрона,  $n_0$  – плотность нейтральных частиц в газе,  $\sigma(v)$  – сечение ионизации атома электроном. При написании уравнения (3), кроме принятых выше ограничений, было принято, что тепловым движением электронов по сравнению с его движением в электромагнитном поле можно пренебречь, что обусловлено неравенством (2) (считается, что в процессе ионизации температура электронов не выше потенциала ионизации  $I_i$ ). Представив решение уравнения (3) в виде  $f_0 = \bar{f}_0 n_e(t)$ , имеем

$$\bar{f}_0 = \delta(v_\perp)\delta(v_\parallel - v_E(\sin\omega_0 t - \sin\varphi)).$$
(5)

Направление поля  $\vec{E}$  принято за продольное направление. Кроме того, считается, что частота поля  $\omega_0$  намного превышает частоту ионизации  $v_i$ .

Функцию (5) следует усреднить по фазам  $\varphi$ , так как при условии (2) ионизация атома электроном может происходить при любом значении фазы  $\varphi$ . В результате получаем известную функцию равнораспределения [1]:

$$\langle \bar{f}_0 \rangle = \frac{\delta(v_\perp)}{\pi \sqrt{v_E^2 - (v_\parallel + v_E \cos \omega_0 t)^2}}.$$
(6)

Видно, что распределение по продольным скоростям в (6) является почти постоянным,  $\sim 1/v_E$ , и растет при  $v_{\parallel} \rightarrow v_E$  как  $1/\sqrt{v_{\parallel} - v_E}$ .

Наконец, вычислим плотность электронов  $n_e(t)$ , уравнение для которой получается из (3) путем подстановки  $f_0 = n_e(t)\bar{f}_0(\vec{v})$  и последующего интегрирования по импульсам

$$\frac{\partial n_e}{\partial t} = \gamma(E_0) n_e = n_0 n_e \int v' \sigma_i(v') \bar{f}_0(\vec{v}') d\vec{v}'.$$
<sup>(7)</sup>

Для сечения ионизации  $\sigma(v)$  с хорошей степенью точности можно воспользоваться формулой борновского приближения [3]:

$$\sigma(v) = \frac{\alpha}{v^2} \ln \frac{v}{v_i} \eta(v - v_i).$$
(8)

Здесь  $\alpha$  зависит от сорта атомов газа, приближенно  $\alpha \approx 2\pi Z e^4/m I_i$  (для атома водорода  $I_i = 13.6 \text{ eV}, \alpha = 16/3 \text{ cm}^4/\text{c}^2$ ). Подстановка (8) в (7) приводит к результату

$$n_e(t) = n_e(0) \exp(\gamma t), \quad \gamma = \frac{\alpha n_0}{\pi} \int_{v_i}^{v_E} \frac{dv}{v} \ln \frac{v}{v_i} \times \frac{1}{\sqrt{v_E^2 - v^2}}.$$
(9)

С хорошей степенью точности для величины  $\gamma$  получаем оценку

$$\gamma \approx \frac{\alpha n_0}{\pi v_i} \ln^2 \frac{v_E}{v_i} = \frac{4Z e^4 n_0}{m^2 v_i^3} \ln^2 \frac{v_E}{v_i}.$$
 (10)

3. Условия применимости полученных результатов. Выше мы пренебрегли упругими столкновениями электронов с атомами газа, а также полевой ионизацией атомов в сильных полях. Эти требования накладывают определенные ограничения на давление газа (или плотность нейтральных частиц  $n_0$ ), а также на амплитуду поля  $\vec{E_0}$ . При условии (2) энергия осцилляций электрона в поле волны, очевидно, будет превосходить и энергию их теплового движения (температуру). Поэтому упругое рассеяние электронов на атомах представляет собой кулоновское рассеяние осциллирующих электронов на ядре и орбитальных электронах атома. Так как энергия осцилляций электрона в поле волны превосходит энергию ионизации атомов газа, то орбитальные электроны атома можно считать свободными, а поэтому их вкладом в рассеянии осциллирующих электронов можно пренебречь. Достаточно ограничиться кулоновским рассеянием на ионах с сечением

$$\sigma_K = \frac{2e^4 Z^2 L_0}{m^2 v^4} \eta(v - v_i).$$
(11)

С учетом функции распределения (6) для частоты упругих столкновений осциллирующих электронов получим

$$\nu_{\text{eff}} = n_i \int_{v_i}^{v_E} dv \frac{2e^4 Z^2 L_0}{\pi m^2 v^3} \frac{1}{\sqrt{v_E^2 - v^2}} \approx \frac{2e^4 Z^2 L_0 n_i}{\pi m^2 v_i^2 v_E}.$$
(12)

Здесь  $L_0 \sim 10 - 20$  – известный кулоновский логарифм.

Сравнивая величины (10) и (12), мы можем записать условие пренебрежения упругими столкновениями по сравнению с неупругими ионизационными столкновениями осциллирующих электронов:

$$\frac{\nu_{\text{eff}}}{\gamma} \simeq \frac{n_i Z L_0}{n_0 2\pi L_i^2} \frac{v_i}{v_E} \ll 1,\tag{13}$$

где  $L_i = \ln v_E / v_i >> 1.$ 

Рассмотрим теперь условие пренебрежения полевой ионизацией. Вероятность полевой ионизации атома с потенциалом ионизации I<sub>i</sub> дается формулой [3]

$$w_i = 4\omega_a \left(\frac{I_i}{I_a}\right)^{5/2} \frac{E_a}{E_0} \exp\left[-\frac{2}{3} \frac{E_a}{E_i} \left(\frac{I_i}{I_a}\right)^{3/2}\right],\tag{14}$$

где  $I_a = h\omega_a/2 = 13.6$  eV – потенциал ионизации атома водорода, а  $\omega_a = 5 \cdot 10^{15}$  с<sup>-1</sup> – боровская частота. Эту величину нужно сравнивать с (12). При этом получаем следующее условие пренебрежения полевой ионизацией

$$\frac{w_i}{\gamma} \simeq \frac{2I_i \sqrt{mI_i}\omega_a}{Ze^4 L_0^2 n_i} \left(\frac{I_i}{I_a}\right)^{5/2} \frac{E_a}{E_0} \exp\left[-\frac{2}{3} \frac{E_a}{E_0} \left(\frac{I_i}{I_a}\right)^{3/2}\right] << 1.$$
(15)

Условие (13) выполняется с большим запасом при степени ионизации, меньшей единицы, т.е. при  $n_i < n_0$ . Условие же (15) сильно зависит от отношения  $E_a/E_0$  и

хорошо выполняется при атмосферном давлении и плотности мощности излучения  $P \leq 10^{14} \text{ W/cm}^2$ . Но при этом для выполнения условия (2) в случае CO<sub>2</sub>-лазера (т.е. при  $\omega_0 = 2 \cdot 10^{14} \text{ c}^{-1}$ ) необходимо выполнение неравенства  $P \geq 4 \cdot 10^{11} \text{ W/cm}^2$ . Как видно, запас для вариации величины P довольно большой.

4. Генерация гармоник поля волны в процессе ионизации атомов газа. Обратим теперь внимание на нелинейность сечения ионизационных столкновений и его зависимость от времени в условиях (2). Это должно проявляться в зависимости от времени диссипативного тока, обусловленного столкновениями частиц. Действительно, вернемся к уравнению (4) и запишем его с учетом как неупругих, так и упругих столкновений

$$\frac{\partial f}{\partial t} + \frac{e\vec{E}}{m}\frac{\partial f}{\partial \vec{v}} = J_{nel}(f) + J_{el}(f).$$
(16)

Пренебрегая упругими столкновениями, из уравнения (16) получаем (3).

При полном пренебрежении столкновениями электронов и при условии (2) уравнение (16) имеет решение (5). Учет столкновений как малой поправки приводит для малой поправки  $f_1$ , ( $f = f_0 + f_1$ ) к уравнению:

$$\frac{\partial f_1}{\partial t} + \frac{e\vec{E}}{m} \frac{\partial f_1}{\partial \vec{v}} = J_{nel}(f_0) + J_{el}(f_0). \tag{17}$$

Впервые это уравнение было проанализировано В.П. Силиным [4] при пренебрежении неупругими столкновениями электронов, т.е. в отсутствие первого слагаемого в правой части. Такое приближение справедливо при выполнении обратного неравенства (13). При этом им было показано, что из-за зависимости сечения упругого рассеяния от времени индуцированный функцией  $f_1$  ток в плазме содержит большое число нечетных гармоник частоты поля  $\omega_0$ . Это означает, что благодаря упругим столкновениям электронов в плазме, помещенной в сильное поле, происходит генерация высоких нечетных гармоник частоты поля.

Ниже мы покажем, что и при выполнении неравенства (13), когда преобладающими являются неупругие столкновения электронов с атомами, т.е. когда в уравнении (17) следует учитывать только первое слагаемое в правой части, происходит аналогичное явление. Впервые это было показано в [5]. С учетом только неупругих столкновений электронов решение уравнения (17) имеет вид

$$f_1^{nel}(\vec{v}) = \int_{\infty}^t dt' J_{nel} \{ f_0(\vec{v} - \vec{v}_E \sin \omega_0 t + \vec{v}_E \sin \varphi) \}.$$
(18)

7

Учитывая, что плотность электронов меняется медленно ( $\gamma << \omega_0$ ), отсюда находим для индуцированного тока

$$\frac{\partial \vec{J}_1^{nel}}{\partial t} = 2en_0 n_e \alpha \vec{i}_{\parallel} \int_{v_i}^{\infty} dv \ln \frac{v}{v_i} \delta[v - v_e(\sin \omega_0 t - \sin \varphi)].$$
(19)

Дальнейшее вычисление правой части (19) подобно проведенному в работе[4]. Именно, представляем  $\delta$ -функцию в виде интеграла, разлагаем подынтегральные экспоненты в ряд по гармоникам частоты  $\omega_0$ , выносим из-под интеграла медленно меняющуюся функцию  $\ln v/v_i$  в виде  $\ln v_E/v_i = L_1$  и усредняем по  $\varphi$ . В результате из (19) получим

$$\frac{\partial \vec{J}_1^{nel}}{\partial t} = 2en_0 n_e \alpha \sum_{n=-\infty}^{+\infty} \vec{i}_{\parallel} \exp(-in\omega_0 t) F(n), \qquad (20)$$

$$F(n) = \frac{1}{n} [1 - (-1)^n] \int_0^\infty \frac{dx}{x} J_0(x) J_n(x) = \frac{2}{\pi n^3} \sin \frac{\pi}{2} n.$$

Отсюда видно, что разложение индуцированного (активного) тока  $\vec{J_1}$  по гармоникам содержит лишь нечетные гармоники частоты  $\omega_0$ , а поэтому только нечетные гармоники основного поля порождаются таким током.

Подставляя (20) в уравнение Максвелла, после несложных вычислений окончательно получаем следующее отношение амплитуды *n*-ой гармоники поля к амплитуде основной гармоники [5]:

$$\frac{E_n^{nel}}{E_0} = \frac{4\omega_{pe}^2 \alpha n_0}{\pi \omega_0^2 v_E} \ln \frac{v_E}{v_i} \times \frac{\sin n\pi/2}{n^3(n+1)},\tag{21}$$

где  $\omega_{pe}^2 = 4\pi e^2 n_e/m.$ 

Для сравнения приведем результаты работы [2] для индуцированного тока  $\vec{J}_1^{el}$  и отношения гармоник  $E_n^{el}/E_0$  при учете только упругих столкновений электронов. Для индуцированного тока в этом случае имеем:

$$\vec{J}_1^{el} = \vec{E}_0 \sum_{n=0}^{\infty} \cos[(2n+1)\omega_0 t] \frac{\omega_{pe}^4}{\omega_0^2} \frac{Z^2 e^2 L_0}{\pi^2 m^3 v_E^3} \ln \frac{v_E}{v_{Te}}.$$
(22)

Здесь  $v_{Te} = \sqrt{T_e/m}$  – тепловая скорость электронов плазмы. Из (22) видно, что и в случае учета только упругих столкновений индуцированный в плазме диссипативный (активный) ток также содержит только нечетные гармоники частоты  $\omega_0$ , а поэтому

излучает только нечетные гармоники основного поля. При этом для отношения полей гармоник справедлива формула [2]:

$$\frac{E_n^{el}}{E_0} = \frac{2n+1}{n(n+1)} \, \frac{n_i Z^2 e^4 L_0}{m^2 \omega_0 v_E^3} \ln \frac{v_E}{v_{Te}}.$$
(23)

Из сравнения формул (21) и (23) следует, что при условии

$$\eta \approx n^2 \frac{n_i v_i^2}{n_0 v_E^2} < 1 \tag{24}$$

в процессе генерации гармоник доминируют неупругие столкновения электронов, в обратном случае доминирующими оказываются упругие столкновения. Важно отметить, что в общем случае токи (20) и (22) суммируются, а следовательно суммируются и индуцированные ими излучения гармоник основного поля.

5. Устойчивость плазмы при пробое газов в сильных электромагнитных полях. Найденная функция распределения электронов (6) обладает двумя опасными свойствами с точки зрения устойчивости описанного выше процесса пробоя в сильных полях. Именно, она сильно анизотропная и поэтому в процессе пробоя может развиться известная анизотропная (вайбеловская) неустойчивость [6] (см. также [7]). Кроме того, на начальной стадии пробоя, пока  $\omega_0 > \omega_{pe}$ , может проявиться еще одна чисто электронная неустойчивость, обусловленная вынужденным рассеянием внешней электромагнитной волны на электронах плазмы [7], образованных в процессе ионизации газа. Возможны также неустойчивости с учетом ионов, но их мы рассматривать не будем из-за малости инкрементов развития.

Чтобы убедиться в сказанном и найти инкремент развития неустойчивости, воспользуемся адиабатическим приближением, считая инкремент меньше обратного времени нарастания плотности плазмы  $\gamma^{-1}$ . В этом приближении можно исходить из дисперсионного уравнения (для малых возмущений вида  $\sim \exp(-i\omega t + i\vec{k}\vec{r})$ )

$$\left|k^2 \delta_{ij} - k_i k_j - \frac{\omega^2}{c^2} \varepsilon_{ij}(\omega, \vec{k})\right| = 0, \qquad (25)$$

где  $\varepsilon_{ij}(\omega, \vec{k})$  – диэлектрическая проницаемость в адиабатическом приближении [7]

$$\varepsilon_{ij}(\omega,\vec{k}) = \left(1 - \frac{\omega_{pi}^2}{\omega^2}\right)\delta_{ij} + \frac{\omega_{pe}^2}{\omega^2}\int d\vec{v} \left[v_i\frac{\partial\bar{f}_0}{\partial v_j} + v_iv_j\frac{\vec{k}\cdot\partial\bar{f}_0/\partial\vec{v}}{\omega - \vec{k}\vec{v}}\right].$$
(26)

При получении этого выражения ионы считались холодными, причем изменением плотности ионов во времени  $n_i(t)$ , также как и электронов  $n_e(t)$ , пренебрегалось за время развития неустойчивости. Кроме того, выражение (26), также как и дисперсионное уравнение (25) записано в системе осциллирующих электронов. Компоненты тензора вычисляются легко, но мы их здесь выписывать не будем из-за громоздкости выражений (с вычислением компонент  $\varepsilon_{ij}(\omega, \vec{k})$  можно познакомиться в [8]).

Начнем с анализа анизотропной неустойчивости, которая имеет место в пределе чисто поперечного распространения возмущений (поперек поля  $\vec{E}_0$ ), т.е. при  $k_{\parallel} = 0$ . В этом пределе из уравнения (25) получаем

$$k^{2}c^{2} = \omega^{2} \left[ 1 - \frac{\omega_{pe}^{2}}{\omega^{2}} \left( 1 + \frac{k^{2}v_{E}^{2}}{2\omega^{2}} \right) \right].$$
(27)

Отсюда в области часто<br/>т $\omega^2 << \omega_{pe}^2$ следует

$$\omega^{2} = -\frac{\omega_{pe}^{2}k^{2}v_{E}^{2}}{2(k^{2}c^{2} + \omega_{pe}^{2})} \le -\omega_{pe}^{2}\frac{v_{E}^{2}}{c^{2}}.$$
(28)

При чисто продольном распространении электронных возмущений, т.е. при  $k_{\perp} = 0$ , анизотропная неустойчивость отсутствует.

В заключение кратко рассмотрим неустойчивость, обусловленную вынужденным рассеянием внешней электромагнитной волны на электронах, образованных в процессе ионизации газа. Эта неустойчивость подробно изложена в учебнике [7] (см. также [8]) и поэтому мы не будем приводить здесь вывод дисперсионного уравнения и анализ его решения. Дадим лишь результат. Максимальный инкремент достигается при рассеянии падающей электромагнитной волны строго назад, причем инкремент равен

$$\mathrm{Im}\omega = \frac{v_E}{2c}\sqrt{\omega_0\omega_{pe}}.$$
(29)

При  $\omega_0 >> \omega_{pe}$  инкремент (29) немного превосходит (28).

Важно отметить, что рассмотренные неустойчивости могут проявиться только в условиях, когда инкременты их развития намного превосходят обратное время нарастания плотности плазмы в процессе ионизации, т.е. когда  $\text{Im}\omega >> \gamma$ . На начальной стадии пробоя, пока плотность электронов мала, очевидно, что это условие не выполняется, а поэтому неустойчивость не развивается.

## ЛИТЕРАТУРА

 С. Г. Арутюнян, А. А. Рухадзе, Краткие сообщения по физике ФИАН, № 9, 12 (1978); Физика плазмы, 5(3), 702 (1979).

- [2] Л. Г. Глазов, А. В. Игнатьев, А. А. Рухадзе, Высокочастотный разряд в волновых полях (Горький, ИПФРАН, 1988), с. 63-70.
- [3] Л. Д. Ландау, Е. М. Лифшиц, Квантовая механика (М., Наука, 1963).
- [4] В. П. Силин, ЖЭТФ 47(6 (12)), 2254 (1964).
- [5] М. В. Кузелев, А. А. Рухадзе, Квантовая электроника 37, 924 (2007); Прикладная физика № 2, 17 (2009).
- [6] E. S. Weibel, Phys. Rev. Lett. 2, 83 (1959).
- [7] А. Ф. Александров, Л. С. Богданкевич, А. А. Рухадзе, Основы электродинамики плазмы (М., Высшая школа, 1988).
- [8] М. В. Кузелев, А. А. Рухадзе, Физика плазмы **27**(2), 170 (2001).

Поступила в редакцию 20 января 2011 г.