УДК 531.19+533.9

ХАРАКТЕРИСТИКИ ДРЕЙФА ЭЛЕКТРОНОВ В ГАЗОВОМ РАЗРЯДЕ НИЗКОГО ДАВЛЕНИЯ С. А. Майоров

Проанализированы особенности функции распределения электронов по энергии при их дрейфе в неоне для типичных условий экспериментов с пылевыми структурами в плазме. Приведены результаты расчетов энергобаланса электронов и характеристик дрейфа в электрическом поле при напряженностях 13 < E/N < 42 Тд с учетом неупругих столкновений и влияния гибели электронов на стенке газоразрядной трубки.

Ключевые слова: дрейф электронов, газовый разряд низкого давления.

Введение. Диффузия и дрейф электронов в газах очень хорошо изучены [1–3], но во многих работах по исследованию пылевой плазмы полагается, что электроны плазмы имеют максвелловское распределение с температурой, определяемой из зондовых измерений [4]. В качестве альтернативной модели иногда используется распределение Дрювестейна, которое не приводит к значительному отличию в характеристиках пылевой плазмы (см. недавнюю работу [5]). Но хорошо известно, что распределения Максвелла и Дрювестейна значительно отличаются от реальных распределений электронов по энергии в газовом разряде.

Для конкретности будем рассматривать дрейф электронов в неоне, для которого была выполнена детальная табуляция различных дрейфовых характеристик [6]. При напряженности электрического поля E/N < 2 Тд дрейф электрона в неоне определяется только упругими столкновениями с атомами, а уже при значениях E/N > 0.1 Тд средняя кинетическая энергия электрона значительно превышает энергию (температуру) атомов. Функция распределения электрона по модулю скорости в этом случае (при учете только упругих соударений) имеет вид [1–3]:

$$f_0(v) = A \exp\left(-\frac{3m}{M}\left(\frac{mN}{eE}\right)^2 \int_0^v c^2 \sigma_{el}^2(c) dc\right),\tag{1}$$

ИОФРАН, ул. Вавилова, 38, 119991 Москва, Россия; e-mail: may@fpl.gpi.ru + mayorov_sa@mail.ru.

здесь m, M – массы электрона и атома, σ_{el} – сечение упругих столкновений, константа A определяется из условия нормировки $1 = 4\pi \int_{0}^{\infty} c^2 f(c) dc$. В частном случае степенной зависимости сечения от скорости: $\sigma_{el}(c) = \sigma_0 (c/c_0)^r$ интеграл в (1) вычисляется. При $\sigma_{el}(c) = \sigma_0 (c/c_0)^{-1/2}$, когда постоянна частота столкновений, распределение (1) переходит в распределение Максвелла, при постоянном сечении: $\sigma_{el}(c) = \sigma_0$ распределение (1) перехоцереходит в распределение Дрювестейна [1–3].

Распределение Дрювестейна обычно лучше соответствует экспериментальным данным, чем распределение Максвелла. Но оба этих распределения (которыми обычно и ограничиваются) не учитывают дрейф электронов вверх по энергетической оси. Распределение Максвелла

$$f_{Maxwell}(\varepsilon) \propto \varepsilon^{1/2} \exp(-\varepsilon/T_e),$$
 (2)

и распределение Дрювестейна

$$f_{Druwestain}(\varepsilon) \propto \varepsilon^{1/2} \exp(-\varepsilon^2/\varepsilon_D^2),$$
 (3)

лишь качественно верно описывает функцию распределения электронов – поскольку именно неупругие процессы определяют характер протекания тока через газоразрядную трубку при самостоятельном разряде.

В режиме стационарного протекания тока через трубку, длина которой много больше ее диаметра, ионы дрейфуют из положительного столба к стенкам трубки и там гибнут. Их восполнение происходит за счет ионизации атомов электронным ударом. Но эволюция электронов в самостоятельном газовом разряде такова: сначала электрон рождается в результате акта ударной ионизации, затем относительно долго дрейфует в электрическом поле, в положительном столбе набирая энергию, а после того, как его энергия превысит потенциальный барьер стенки, почти сразу же на ней гибнет. На качественном уровне этот процесс неплохо описывает "трубопроводная" модель (pipe-line model). В ней полагается, что электроны дрейфуют от первоначально нулевой энергии до энергии, равной потенциалу ионизации. При постоянной частоте столкновений электронов с атомами получаем распределение [3]

$$f_{pipe-line}(\varepsilon) = 3[1 - (\varepsilon/I)]^{1/2}/2I.$$
(4)

Здесь и далее все функции распределения электронов по энергии (ФРЭЭ) для наглядности будут нормироваться на единицу $1 = 4\pi \int_{-\infty}^{\infty} f(\varepsilon) d\varepsilon$.

Постановка задачи. Процессы возбуждения, ионизации и рекомбинации в реальных условиях чаще всего не могут быть учтены в рамках пространственно-однородной модели. Только размножение лавины до определенной степени можно моделировать, рассматривая пространственно-однородный стационарный поток электронов. Модель самостоятельного газового разряда должна включать в себя механизм убыли электронов. Для процесса дрейфа электронов в положительном столбе можно положить, что число актов рождения и гибели электронов равны. Тогда учет гибели электронов на стенках можно сделать путем введения в алгоритм правила, по которому на каждый акт ионизации из ансамбля электронов убирается один электрон. Наиболее естественным для задачи о дрейфе электрона в положительном столбе будет положить, что покидать ансамбль будет не появляющийся в результате акта ионизации электрон, а самый энергичный в рассматриваемом ансамбле. Средняя энергия электронов, которые покидают систему, может служить хорошей оценкой потенциала стенки. Таким образом, потенциал стенки определяется из условия равенства числа актов ионизации и уходов частиц из системы (число актов гибели на стенке).

При ионизации электронным ударом налетающий на атом электрон теряет энергию, равную сумме энергии ионизации и кинетической энергии второго электрона. После акта ионизации его энергия полагается равной: $\varepsilon'_1 = \varepsilon_1 - I - \varepsilon'_2$. Положим, что энергия первого электрона с равной вероятностью принимает все возможные значения:

$$\varepsilon_1' = (\varepsilon_1 - I)R,\tag{5}$$

где 0 < R < 1 – случайное число, энергия второго электрона $\varepsilon'_2 = (\varepsilon_1 - I)(1 - R).$

Влияние соотношения энергий между налетающим и выбитым при ионизации электронным ударом электронами обсуждается в работе [7], где рассмотрено 4 различных модели. Приближение о равновероятном распределении энергий выбрано из-за наилучшего соответствия ситуации газового разряда, где поля невелики.

Для простоты модели положим, что процессы рекомбинации электронов и атомов, тушения возбужденных уровней и переноса резонансного излучения не меняют энергии электронов. При выполнении расчетов также полагалось, что потери электронов на возбуждение атомных уровней невосполнимы, т.е. возбужденные атомы теряют энергию возбуждения в режиме объемного высвечивания, а метастабильные атомы диффундируют за границы рассматриваемого объема и гибнут на стенках.

Для расчета характеристик дрейфа электронов в газе использовался метод Монте-Карло [6, 8]: после каждого столкновения проводилось интегрирование уравнения движения электрона в постоянном поле и, в соответствии с известными сечениями упругих и неупругих процессов, определялась вероятность того или иного события.

Таблица 1

электрического поля $E/N=13-41~Td$								
Неон, $E = 2V/cm$, 298 K, $E_1 = 16$ eV, $I = 20.5$ eV								
No расчета	1	2	3	4	5	6	7	8
Давление, Па	20	30	50	60	20	30	50	60
φ_{wall}, B	∞	∞	∞	∞	29.0	27.0	24.8	23.9
$W, \mathrm{km/s}$	63.8	45.7	29.5	25.2	65.3	46.3	29.7	25.3
eD_{\perp}/μ	8.5	7.4	6.8	6.7	8.0	7.6	6.8	6.5
$\langle \varepsilon \rangle$	10.1	9.2	8.4	8.1	9.9	9.1	8.2	8.1
α/N_a	0.040	0.018	0.0047	0.0025	0.028	0.013	0.0035	0.002
Q_{ea}/Q_{EW}	7.4	7.6	11.1	13.7	24.6	19.2	16.0	16.8
Q_{ex}/Q_{EW}	71.2	78.1	82.7	82.4	60.1	70.5	79.2	80.0
Q_{ion}/Q_{EW}	21.4	14.3	6.2	3.9	14.8	10.3	4.7	4.1
$\langle \varepsilon - E_1 \rangle$	6.3	4.9	3.6	3.2	5.5	4.5	3.5	3.1
$\langle \varepsilon - I \rangle$	4.9	3.7	2.5	2.1	3.7	2.8	2.1	1.9
E/N, Td	40.6	27.1	16.2	13.5	40.6	27.1	16.2	13.5
<i>Т_е</i> эксперимент, эВ	_	_	_	_	4.5	3.8	3.5	7±1

Результаты расчетов методом Монте-Карло характеристик дрейфа электрона в неоне при температуре $T_a = 298 \ K$ для различных приведенных напряженностей

Примечание: Потенциал поверхности трубки – φ_{wall} , B; скорость дрейфа – W, км/с; средняя энергия – $\langle \varepsilon \rangle$, эB; энергетический коэффициент Таунсенда – eD_{\perp}/μ , эB; приведенный ионизационный коэффициент Таунсенда – α/N_a в ед. 10^{-16} см²; доля энерговклада от электрического поля, пошедшая на упругие потери в газ, $100\% Q_{ea}/Q_{EW}$; доля на возбуждение, $100\% Q_{ex}/Q_{EW}$; доля в ионизацию, $100\% Q_{ion}/Q_{EW}$.

Результаты расчетов характеристик дрейфа электронов в неоне. В работе [9] были выполнены расчеты зарядки пылевых частиц в плазме газового разряда для условий экспериментов [10] и получено очень хорошее совпадение с экспериментальными данными о значениях заряда пылевых частиц (с учетом облака связанных ионов). Поскольку распределения Максвелла и Дрювестейна дают весьма грубое приближение распределения электронов по энергии, то представляет интерес рассмотрение особенностей распределения электронов в плазме газового разряда, важных для моделирования свойств пылевой плазмы. В настоящей работе для условий экспериментов [10, 11] выполнены расчеты характеристик дрейфа электронов в более детальной модели, описанной выше, и выполнен анализ энергобаланса электронов. В частности, проведен учет влияния стенки газоразрядной трубки на тело и хвост функции распределения.

При дрейфе в электрическом поле электроны приобретают энергию от электрического поля – за счет джоулева нагрева – за единицу времени электрон приобретает в среднем энергию $Q_{EW} = eEW$, здесь e – заряд электрона, E – напряженность электрического поля, W – скорость дрейфа. Энергия, получаемая электроном от электрического поля, теряется им в упругих столкновениях с атомами, затрачивается на возбуждение атомных уровней и ионизацию, кроме того электроны уносят или приобретают энергию при рекомбинации: $Q_{EW} = Q_{ea} + Q_{ex} + Q_{ion} + Q_{rec}$ – в правой части представлены соответствующие средние энергопотери одного электрона за единицу времени. При рекомбинации электрон может и приобретать энергию, например, при тройной рекомбинации.

В таблице 1 приведены результаты расчетов характеристик дрейфа электрона в неоне при температуре газа 298 К и различных приведенных напряженностях электрического поля E/N = 13 - 42 Тд. В большей части справочников и книг приводятся лишь скорость дрейфа электронов и наблюдаемая в экспериментах величина eD_{\perp}/μ , называемая также характеристической энергией Таунсенда. В случае максвелловского распределения характеристическая энергия Таунсенда совпадает с температурой электронов. Но для реальных распределений электронов по энергии соответствия между средней энергией электронов и значением характеристической энергии Таунсенда нет, поэтому, помимо значений eD_{\perp}/μ , в таблице 1 приведены также значения средней энергии электронов $\langle \varepsilon \rangle = \int_{0}^{\infty} \varepsilon f(\varepsilon) d\varepsilon$.

При наличии актов возбуждения атомов и их ионизации проводилось вычисление средней энергии превышения порога соответствующей реакции по всем происшедшим актам возбуждения и ионизации:

$$\langle \varepsilon - E_1 \rangle = \int_{E_1}^{\infty} (\varepsilon - E_1) f(\varepsilon) \sigma_{ex}(\varepsilon) d\varepsilon / \int_{E_1}^{\infty} f(\varepsilon) \sigma_{ex}(\varepsilon) d\varepsilon, \tag{6}$$

$$\langle \varepsilon - I \rangle = \int_{I}^{\infty} (\varepsilon - I) f(\varepsilon) \sigma_{ion}(\varepsilon) d\varepsilon / \int_{I}^{\infty} f(\varepsilon) \sigma_{ion}(\varepsilon) d\varepsilon.$$
(7)

Эти показатели характеризуют скорость спада ФРЭЭ за порогами возбуждения и ионизации. В таблице 1 приведены также относительные потери энергии электронов в упругих столкновениях, на возбуждение и ионизацию атомов. Величина Q_{ion}/Q_{EW} является ионизационным коэффициентом Таунсенда, нормированным на потенциал ионизации, и соответствует доле ионизационных потерь. Приведенные в таблице 1 данные дают достаточно полную картину о качественных характеристиках дрейфа электронов в электрическом поле.

Рис. 1: Функция распределения электронов по энергии при дрейфе в неоне при давлении газа P = 60 Па, E = 2 В/см (E/N = 13.5 Tд). Жирные точки – результаты моделирования методом Монте-Карло, для сравнения также приведены ФРЭЭ Максвелла (сплошная кривая), Дрювестейна (штрихованная кривая) и трубопроводное распределение (штрихпунктирная кривая) в линейном и логарифмическом масштабах.

Рис. 2: Функция распределения электронов по энергии при дрейфе в неоне при давлении газа P = 20 Па, E = 2 В/см (E/N = 40.6 Tд). Жирные точки – результаты моделирования методом Монте-Карло, для сравнения также приведены ФРЭЭ Максвелла (сплошная кривая), Дрювестейна (штрихованная кривая) и трубопроводное распределение (штрихпунктирная кривая).

Для иллюстрации точности различных моделей на рис. 1 и 2 представлены результаты расчетов 5 и 8 из таблицы 1, которые учитывают конечность потенциала стенки и гибель электронов на ней. Для сравнения приведены также распределения Максвелла и Дрювестейна с такой же средней энергией электронов, и функция распределения электронов – по трубопроводной модели. На основании результатов расчетов можно сделать следующие выводы:

 при напряженности электрического поля 10 < E/N < 100 Тд дрейф электрона в неоне сопровождается преобладающим влиянием на энергобаланс неупругих столкновений;

2) при низком давлении газа влияние корректного учета в энергобалансе гибели электронов на стенке дает весьма существенный вклад. В основном это относится к доле энергии, затраченной на нагрев газа и ионизацию. Отличия в теле функций распределения также весьма значительны;

3) следует также отметить, что помимо хорошо известного факта сильного влияния неупругих процессов возбуждения и ионизации на хвост функции распределения, имеется весьма значительное влияние неупругих процессов на функцию распределения электронов в области субтеловых энергий. Распределение электронов в области $\varepsilon << T_e$ сильно отличается от распределений Максвелла и Дрювестейна, что связано с наличием у электрона при его рождении довольно значительной кинетической энергии. При акте возбуждения электрон имеет энергию $\langle \varepsilon - E_1 \rangle = 3 - 6$ эВ, а при акте ионизации – $\langle \varepsilon - I \rangle / 2 = 1 - 2.5$ эВ;

4) для рассмотренных параметров разряда энергозатраты на возбуждение в тричетыре раза превышают затраты на ионизацию.

Заключение. Полученные результаты расчетов показывают основные закономерности в формировании функции распределения электронов по энергии и влияние на энергобаланс различных процессов. Соответственно, эти результаты могут быть полезны при анализе экспериментальных данных, в частности, экспериментов с пылевой плазмой в разряде постоянного тока.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты 08-02-00791-а, 08-02-01172-а) и Нидерландского научного общества NWO (грант 047.017.2006.007).

ЛИТЕРАТУРА

- [1] Л. Хаксли, Р. Кромптон, Диффузия и дрейф электронов в газах (М., Мир, 1977).
- [2] Л. М. Биберман, В. С. Воробьев, И. Т. Якубов, Кинетика неравновесной плазмы (М., Наука, 1982).
- [3] Л. Д. Цендин, УФН **180**, 139 (2010).

- [4] В. Е. Фортов, А. Г. Храпак, С. А. Храпак, В. И. Молотков, О. Ф. Петров, УФН 174, 495 (2004).
- [5] S. A. Khrapak, Phys. Plasm. **70**, 046415 (2010).
- [6] С. А. Майоров, Краткие сообщения по физике ФИАН, **36**(10), 37 (2009).
- [7] Y. Tzeng, E. E. Kunhardt, Physical Review A **34**, 2148 (1986).
- [8] S. Dujko, R. D. White and Z. Lj. Petrovic, J. Phys. D: Appl. Phys. 41, 245205 (2008).
- [9] С. А. Майоров, А. Д. Усачев, А. С. Зобнин, О. Ф. Петров, В. Е. Фортов, Тезисы докладов 34 Звенигородской конференции по физике плазмы и УТС, 12-16 февраля 2007, с. 251; S. A. Maiorov, A. D. Usachev, A. V. Zobnin, O. F. Petrov, V. E. Fortov "*Effective charge of dust grain in dc plasma*" 34th European physical Society Plasma Physics Conference, Warsaw, Poland, 2 - 6 July 2007.
- [10] V. E. Fortov, O. F. Petrov, A. D. Usachev, and A. V. Zobnin, Phys. Rev. E 70, 046415 (2004).
- [11] A. D. Usachev, A. V. Zobnin, V. E. Fortov, et al., Phys. Rev. Lett. **102**, 045001 (2009).

Поступила в редакцию 13 апреля 2011 г.