УДК 535.37

ПОВЕДЕНИЕ ПОЛОС ПОГЛОЩЕНИЯ В ЧИСТЫХ КВАРЦЕВЫХ СТЕКЛАХ ПРИ ЭЛЕКТРОННОМ ОБЛУЧЕНИИ

А.П. Сергеев, П.Б. Сергеев

В стеклах типа КС-4В, КУ-1 и Корнинг 7980 изучено поведение шести индивидуальных полос наведенного электронным пучком поглощения с ростом его флюенса (F) до 20 кДж/см². Во всех стеклах амплитуды полос из УФ-области выходили на квазистационарный уровень при $F \approx 4 - 5 \ \kappa Дж/см^2$.

Ключевые слова: кварцевые стекла, КС-4В, КУ-1, наведенное поглощение, индивидуальные полосы, электронный пучок.

Высокочистые кварцевые стекла предназначаются для проходной оптики и световодов, работающих с излучениями разной интенсивности и длин волн. Они же, в силу своей чистоты, служат моделями для изучения фундаментальных процессов радиационного дефектообразования [1]. Поэтому изучение поведения новых все более чистых кварцевых стекол, к которым относится и российское стекло КС-4B, под действием разнообразных излучений актуально и в практическом, и в научном плане.

В работах [2–4] представлялись результаты разных этапов испытаний поведения кварцевых стекол типа КС-4В, КУ-1 и Корнинг 7980 при длительном воздействии импульсов электронного пучка (ЭП) с энергией электронов ~280 кэВ и общим флюенсом (F) до ~20 кДж/см². Там зависимости наведенной оптической плотности (OD) образцов стекол от F приводились лишь на длине волны (λ) 250 нм. Но накопленный массив спектров образцов содержал значительно больше информации. Её извлечение на основе разложения спектров OD на индивидуальные полосы (ИП) и было целью данной работы.

Изученные стекла имеют сходства и различия по основным примесям ОН и Cl. KУ-1 и Корнинг 7980 ArF Grade (далее C8-ArF) имеют почти одинаковое количество OH, ~1000 ppm, но различаются по содержанию Cl, ~100 и < 20 ppm соответственно. У

Учреждение Российской академии наук Физический институт им. П.Н. Лебедева РАН, 119991 Москва, Россия; e-mail: psergeev@sci.lebedev.ru.

C8-ArF и KC-4B содержание Cl примерно одинаково, но в KC-4B почти нет OH. Cравнение поведения основных дефектов у этих пар стекол позволяет по-новому взглянуть на роль технологических примесей в процессах радиационного дефектообразования [5–10].

Экспериментальные результаты и методика их обработки. Детали методики облучения образцов ЭП описаны в [2–4]. Приведем её главные особенности. Образцы стекол облучались на электронной пушке установки ЭЛА [11] в импульсном режиме с частотой ~5 мГц. Энергия электронов за фольгой электронной пушки была ~280 кэВ, плотность тока около 200 A/см² при длительности импульса 80 нс.

Образцы диаметром 12 мм и толщиной 3–4 мм размещались в нишах дюралевой пластины. Со стороны падения ЭП они закрывались фольгами из титана толщиной 14–28 мкм (первый режим облучения), 92 мкм (второй) и около 140 мкм (третий) [2–4]. F_1 на поверхности образцов за импульс при этом составлял ~2 Дж/см² для первого, ~0.3 для второго и ~0.05 Дж/см² для третьего режимов облучения. При первом режиме облучения поглощенная энергия в образцах почти равномерно распределена в поверхностном слое толщиной ~0.2 мм. При F = 20 кДж/см² поглощенная доза в нем достигала 400 МГр [10].

Спектры пропускания образцов $T(\lambda)$ в цифровом формате в области 200–1000 нм с шагом 3 нм снимались на спектрофотометре Genesys-2, а в области 150–240 нм – на монохроматоре BMP-2. Оптическая плотность на каждой λ определялась по формуле:

$$OD = \ln(T_0/T). \tag{1}$$

Здесь Т₀ и Т – пропускание образца до и после облучения ЭП.

Спектры $OD(\lambda)$ разлагались на ИП по отлаженной методике [9–10]. ИП $L\lambda_i$ описывались гауссовым профилем по энергии. В переменных по λ они рассчитывались по формуле:

$$L\lambda_i = A_i \exp\{-\ln 2(E_i/\Delta E_i)^2 [(\lambda_i - \lambda)/\lambda]^2\}.$$
(2)

Здесь A_i – амплитудный коэффициент полосы в конкретном спектре, E_i и λ_i – положение её максимума, ΔE_i – полуширина полосы на полувысоте. Расчетные спектры (SLi) являются суммой по всем $L\lambda_i$. Процесс разложения спектров на ИП сводился к подбору параметров, при которых величина $OD(\lambda) - SLi(\lambda) = Dif(\lambda)$ по модулю не превышала 0.01.

Таблица 1

i	λ_i , нм	E_i , эВ	ΔE_i , эВ	Поглощающий центр	
1	260	4.8	0.54	HAK	
2	244	5.1	0.27	?	
3	225	5.54	0.25	?	
4	213	5.86	0.42	Е'-центр	
5	183.5	6.8	0.55	?	
6	163.5	7.63	0.33	КДЦ	

Характеристики индивидуальных полос поглощения кварцевых стекол

В таблице 1 даны усредненные параметры ИП, полученные при разложении спектров $OD(\lambda)$ у изученных стекол. Вначале характеристики ИП брались из литературы [12–14]. Оптимизация вариантов разложения с изменением параметров привела к тому, что данные в табл. 1, по сути, стали экспериментальными. Они получены на основе обработки около сотни спектров наведенного ЭП поглощения в исследованных стеклах, а также их модификаций после действия излучения KrF- и ArF-лазеров [2–4, 9].

Как видно из табл. 1, все спектры $OD(\lambda)$ в изученных стеклах описываются на основе шести ИП, расположенных в области ~160–350 нм. В области с 350 < λ < 1000 нм наведенное поглощение в стеклах не превышало порога его определения (0.01).

Привязка ИП к поглощающим центрам (последняя колонка в табл. 1) проведена на основе информации по дефектам кварцевых стекол [12–14]. Полосы на 163.5, 213 и 260 нм связаны с кислороддефицитными центрами (КДЦ), *E*'-центрами и немостиковыми атомами кислорода (НАК). Природа остальных полос пока окончательно не установлена.

После разложения спектров на ИП их можно описывать набором коэффициентов A_i . Они равны произведению поверхностной плотности соответствующих дефектов (N_i) на их сечение поглощения в максимуме (σ_i) или $N_i = A_i/\sigma_i$. При расчете значений N_i брались такие величины: $\sigma_1 = 5.3 \cdot 10^{-18}$ см², $\sigma_4 = 2.5 \cdot 10^{-17}$ см², $\sigma_6 = 7.5 \cdot 10^{-17}$ см² [12– 14]. Для остальных дефектов σ_i не известны, поэтому, представляя результаты, будем использовать и A_i , и N_i .

На рис. 1 показаны зависимости $A_i(F)$ у пяти первых полос в стеклах КС-4В и КУ-1. Основная их особенность заключается в насыщении поглощения у первых пяти полос при $F \approx 4 - 5$ кДж/см². Это наблюдалось и у корнинговских образцов [3]. Интенсивность шестой полосы, как видно на рис. 2, также насыщается, но при

Рис. 1: Зависимости $A_i(F)$ для первых пяти полос у стекла KC-4B (a) и KУ-1 (б).

 $F \approx 10 - 15 \text{ кДж/см}^2$. Здесь важен факт практического совпадения величин A_6 у таких разных стекол как КС-4В и КУ-1. У лучших корнинговских стекол величина A_6 заметно меньше, чем у этой пары.

В таблице 2 представлены значения A_i и N_i для спектров образцов стекол с разной задержкой после окончания облучения. Это дает представление о скоростях релакса-

ции различных полос поглощения после облучения. Хотя флюенсы ЭП у образцов и различаются, но все они находятся в области насыщения поглощения, что позволяет производить их сравнение. В последней колонке этой таблицы приводятся также значения отношения $N_1/N_4 = P$, которые отражают диспропорции в количестве НАК и E'-центров. Различия в величине P у "влажных" (КУ-1 и Корнинг 7980) и "сухих" (КС-4В) стекол показывают степень влияния гидроксильных групп на образование этой основной пары дефектов стекол [10].

Таблица 2

	$N_1 \cdot 10^{-16},$	A_2	A_3	$N_4 \cdot 10^{-16},$	A_5	$N_6 \cdot 10^{-16},$	$P = N_1/N_4$
	cm^{-2}	(245)	(225)	cm^{-2}	(183.5)	cm^{-2}	
КУ-1							
F = 19.7							
кДж/см ²							
1 час	10.4	0.1	0.175	4.56	0.86	_	2.3
2 года	6.2	0.03	0.08	2.28	0.47	3.6	2.7
C8-ArF							
F = 6.4							
кДж/см ²							
1 час	6.04	0.04	0.11	2.32	0.46	_	2.6
2 года	4.72	0.026	0.045	1.72	0.31	1.33	2.74
KC-4B							
F = 21.6							
κ Дж/см ²							
1 час	2.26	0.06	0.06	1.64	0.31	_	1.4
2.7 года	1.7	0.05	0.04	0.93	0.17	3.65	1.8

Значения N_i и A_i для ряда спектров образцов стекол

Обсуждение результатов. Сравнение параметров из табл. 1 с имеющимися в литературе данными [12–14] показывает, что различия в λ_i и E_i у всех ИП не превышают 1%. Небольшие различия наблюдаются в значениях ΔE_i у НАК и E'-центров. У слабых второй и третьей полос эти различия более существенны и достигают иногда 100% [12].

Данные по ширине полосы на 183.5 нм, по-видимому, являются новыми. Эта сильная полоса обнаружена недавно [12–14]. Наши результаты показывают отсутствие жесткой

связи её интенсивности с другими полосами, что отвергает её принадлежность НАК [14]. Ответственный за эту полосу дефект имеет скорость релаксации, близкую с НАК и E'центрами. Возможно, это из-за наличия у него несвязанного электрона. Дефект легко "отжигается" излучением KrF- и ArF-лазеров [9]. По этим свойствам на роль данного дефекта подходят пероксирадикалы. Но это могут быть и междоузельные молекулы N₂O. Их контур поглощения [15] близок к поглощению этого пока неизвестного дефекта.

Самые большие различия между литературными [12–14] и нашими значениями наблюдались в ширине полосы на 163.5 нм. Возможной причиной этого является наложение на неё ряда узких линий поглощения от неизвестных пока дефектов [9], а также "хвостов" от широких континуумов поглощения комплексов ≡SiOH и междоузельных молекул кислорода и воды [16–18]. Концентрация последних зависит от предыстории образцов, что может сказываться на измеряемых значениях λ_6 и ΔE_6 .

Рис. 2: Зависимости A₆(F) у стекол КС-4В, КУ-1 и разных модификаций Корнинг 7980 (Base Grade – C8 – 0, KrF-Grade – C8-KrF), облучавшихся в первом режиме. Цифра после марки других стекол в обозначениях указывает режим облучения.

Близость $A_6(F)$ у таких разных стекол как КС-4В и КУ-1 указывает на схожесть механизмов наработки и релаксации в них КДЦ. Ранее предполагалось [10], что таким универсальным механизмом является ударное выбивание кислорода в междоузлие электронами с энергией > 110 кэВ. Но представленные на рис. 2 новые результаты по этой полосе для всех исследованных стекол при разных режимах облучения высветили ряд фактов, ставящих под сомнение этот вывод. Так у стекол Корнинг 7980 A_6 заметно меньше, чем у КУ-1 и КС-4В, а ударный механизм одинаково должен работать и здесь. И это не ошибка: такие же различия в интенсивностях полосы на 163 нм в разных стеклах наблюдали и в [14, 19]. Странно и то, что значения $A_6(F)$ у КС-4В и КУ-1 при разных режимах облучения ЭП хорошо ложатся на одну зависимость. Ведь повышение толщины фильтров из Ті фольг от 14 до 140 мкм при переходе от первого к третьему режиму облучения должно существенно снизить долю быстрых электронов, а, значит, и снизить эффективность наработки КДЦ. Независимость $A_6(F)$ от режимов электронного облучения указывает на то, что механизм наработки КДЦ в большей степени связан с дозовыми параметрами облучения, т.е. с общим числом электронно-дырочных пар, наработанных в стеклах, чем со спектральным составом ЭП.

Эти факты говорят в пользу так называемого френкелевского механизма образования КДЦ [14], когда разрыв "напряженной" связи ≡Si-O-Si≡ ведет к образованию ≡Si-Si≡ и междоузельного атома кислорода. При этом наблюдаемые различия или совпадения в A_6 у разных стекол объясняются соответствующим количеством "напряженных" связей [14].

Здесь возникает необходимость в уточнении понятия "напряженной" связи. Оно используется для описания участков решетки кварцевого стекла, в которой угол между осями от кислорода на ближайшие атомы кремния отличается от регулярного угла решетки в 144°. Есть два вида таких отличий, когда этот угол больше и меньше регулярного [20–21]. В первом случае имеет смысл говорить о "напряжении растяжения" или о "растянутой" связи, во втором – о "напряжении сжатия" или "сжатой" связи. Эти различия пока не выделялись, но, с нашей точки зрения, они принципиально важны. Простое рассмотрение геометрии таких связей показывает, что разрыв их первого типа, вероятнее всего, должен приводить к наработке комплиментарной пары дефектов из НАК и *E*′-центра, а разрыв "сжатой" связи может вести к френкелевскому механизму наработки КДЦ. Но в обоих этих случаях вероятность образования конкретных дефектов пропорциональна количеству актов ионизации атомов стекла, а значит, пропорциональна дозе облучения.

Вне зависимости от механизмов образования КДЦ, величину A_6 можно использовать в качестве показателя эффективности наработки КДЦ и междоузельных атомов О. Но число КДЦ определяет нижнюю границу числа этих атомов, так как возможен отрыв О и от НАК. При облучении изученных стекол ЭП эффективность наработки в них КДЦ ($\mu_6 = N_6/F$) на этапе $F \leq 1$ кДж/см² равна $\mu_6 \approx 10^{13}$ Дж⁻¹. За импульс ЭП с $F_1 = 2 \ \text{Дж/см}^2$ в слое толщиной 0.02 см плотность выбитых атомов О будет $\sim 10^{15} \text{ см}^{-3}$. Уже после ~ 10 импульсов ЭП количество радиолизного кислорода в стекле превысит его концентрацию, достигаемую за счет диффузии из воздуха [17]. Именно этот междоузельный кислород и будет влиять на распределение первичной дефектности стекла в процессах релаксации. В [10, 22] показано, как это может происходить.

Таким образом, в работе экспериментально установлено, что во всех исследованных стеклах с ростом флюенса ЭП поглощение пяти ИП из УФ-области спектра выходит на насыщение в области $F \approx 4 - 5 \text{ кДж/см}^2$, а полоса КДЦ с максимумом на 163.5 нм практически перестает расти при $F > 10 \text{ кДж/см}^2$, т.е. при средних дозах D(в приповерхностной зоне 0.2 мм) > 200 МГр. Такая стабилизация ИП свидетельствует об установлении равновесия между скоростями наработки и релаксации дефектов. В деталях этих процессов можно разобраться лишь при комплексном моделировании кинетики наработки и релаксации всех дефектов стекол с учетом их взаимодействия со свободными электронами, друг с другом, совокупностью междоузельных атомов и ионов кислорода, водорода, хлора и большого числа их молекулярных соединений.

В заключение выражаем благодарность Ставровскому Д.Б., Рейтерову В.М. и Дубровской Г.Г. за помощь в проведении спектральных измерений.

ЛИТЕРАТУРА

- [1] А. В. Абрамов и др., Физика и химия стекла 14, 91 (1988).
- [2] П. Б. Сергеев и др., Оптический журнал **71**(6), 93 (2004).
- [3] П. Б. Сергеев и др., Квантовая электроника **37**, 706 (2007).
- [4] П. Б. Сергеев и др., Квантовая электроника **37**, 711 (2007).
- [5] А. В. Амосов и др., Физика и химия стекла **9**, 741 (1983).
- [6] А. В. Амосов и др., Физика и химия стекла 13, 126 (1987).
- [7] А. Р. Силинь и др., Физика и химия стекла **13**, 425 (1987).
- [8] L. Vaccaro et al., J. of Non-Cryst. Solids **353**, 586 (2007).
- [9] П. Б. Сергеев, А. П. Сергеев, Квантовая электроника 40, 804 (2010).
- [10] А. П. Сергеев, П. Б. Сергеев, Оптический журнал 78(5), 77 (2011).
- [11] P. B. Sergeev, J. of Soviet Laser Research **14**(4), 237 (1993).
- [12] K. Saito et al., J. Appl. Phys. 86, 3497 (1999).
- [13] L. Skuja et al., Proc. SPIE **4347**, 155 (2001).
- [14] K. Kajihara et al., Phys. Rev. B **78**, 094201 (2008).
- [15] Х. Окабе, Фотохимия малых молекул (М., Мир, 1981), с. 261.
- [16] E. Vella et al., Phys. Rev. B 77, 165203 (2008).
- [17] K. Kajihara et al., J. Appl. Phys. **98**, 013527 (2005).
- [18] K. Kajihara et al., J. of Non-Cryst. Solids **352**, 2303 (2006).

- [19] M. Cannas et al., J. of Non-Cryst. Solids **280**, 188 (2001).
- [20] K. Awazu, H. Kawazoe, Appl. Phys. Reviews 94, 6243 (2003).
- [21] R. M. Van Ginhoven et al., Phys. Rev. B 71, 024208 (2005).
- [22] L. Zhang et al., Phys. Rev. B 53, 7182 (2008).

Поступила в редакцию 6 декабря 2010 г.

После переработки 7 сентября 2011 г.