УДК 678+548.736

ИССЛЕДОВАНИЕ СВЕТОИНДУЦИРОВАННОЙ ПЕРЕОРИЕНТАЦИИ ДИРЕКТОРА НЕМАТИЧЕСКИХ ЖИДКИХ КРИСТАЛЛОВ ПО ДИНАМИКЕ ДВУЛУЧЕПРЕЛОМЛЕНИЯ

И. А. Будаговский¹, А. С. Золотько¹, Т. Е. Ковальская^{1,2}, М. П. Смаев¹, С. А. Швецов^{1,3}, Н. И. Бойко², М. И. Барник⁴

Предлагается применение метода двулучепреломления для измерения порога светоиндуцированного перехода Фредерикса и фактора усиления нелинейности нематических жидких кристаллов по динамике релаксации директора в световом поле. Изменение двулучепреломления регистрируется по интерференции обыкновенной и необыкновенной компонент светового пучка, воздействующего на ориентацию директора жидкого кристалла. Измерены пороги перехода Фредерикса и факторы усиления нелинейности для образцов с примесью гребнеобразных полимеров различной степени полимеризации. Найденные пороги согласуются с результатами, полученными методом аберрационного самовоздействия.

Ключевые слова: жидкие кристаллы, двулучепреломление, светоиндуцированная переориентация, переход Фредерикса.

Нематические жидкие кристаллы (НЖК) обладают ориентационными нелинейностями, приводящими к разнообразным оптическим эффектам [1]. Так, в прозрачных НЖК показатель преломления необыкновенной волны значительно увеличивается под действием излучения непрерывных лазеров при светоиндуцированном повороте директора **n** к световому полю **E** (положительная ориентационная нелинейность). Этот пово-

¹ ФИАН, 119991, Москва, Ленинский пр., 53; e-mail: zolotko@lebedev.ru.

 ² Московский государственный университет им. М.В. Ломоносова, 119991, Москва, Ленинские горы, 1.
 ³ Московский физико-технический институт, 141700, Московская область, Долгопрудный, Институтский пер., 9.

⁴ Институт кристаллографии им. А. В. Шубникова РАН, 117333, Москва, Ленинский пр., 59.

рот обусловлен моментом сил $\vec{\Gamma}_{tr}$, действующим со стороны поля **E** на индуцированные этим же полем диполи. Для поглощающих НЖК (прозрачные нематические матрицы с примесью красителей) характерна также ориентационная нелинейность, связанная с моментом $\vec{\Gamma}_{abs}$, обусловленным изменением межмолекулярных сил при поглощении световых квантов [2, 3]. Нелинейность поглощающих НЖК может быть существенно больше нелинейности нелегированных. Её можно характеризовать фактором усиления η , являющимся коэффициентом пропорциональности между моментами $\vec{\Gamma}_{abs} = \eta \vec{\Gamma}_{tr}$. Фактор усиления может быть отрицательным; при этом директор НЖК под действием момента $\vec{\Gamma}_{abs}$ поворачивается перпендикулярно световому полю и показатель преломления необыкновенной волны уменьшается (отрицательная ориентационная нелинейность) [3].

Одним из основных параметров, позволяющих сравнивать ориентационные нелинейности различных жидкокристаллических систем и определять фактор усиления η , является величина порога светоиндуцированного перехода Фредерикса (СПФ). Величину порога СПФ определяют с помощью методов самовоздействия светового пучка [3, 4], либо двулучепреломления [5]. Самовоздействие света позволяет определить порог по уширению пучка (возникновению аберрационной картины) в дальней зоне дифракции. При использовании метода двулучепреломления измеряют фазовый набег между обыкновенной и необыкновенной составляющими зондирующего пучка при освещении НЖК ориентирующим молекулы световым пучком. Зондирующий пучок при этом должен быть совмещен с областью переориентации, а его размер должен быть меньше этой области. Обе методики предполагают достаточно высокую интенсивность излучения, превышающую пороговое значение. При этом могут проявляться эффекты, затрудняющие измерения, например, изменение показателя преломления НЖК из-за его нагрева или влияния света на ориентацию директора на поверхности ячейки [6].

В данной работе мы покажем, что порог СПФ можно определить с помощью методики, основанной на измерении динамики двулучепреломления при релаксации директора в пучке допороговой мощности, который одновременно является зондирующим. Эксперименты проводили с чистой нематической матрицей (положительная нелинейность) и нематической матрицей с примесью полимеров, индуцировавших отрицательную оптическую нелинейность.

Методика эксперимента. Поворот директора НЖК приводит к изменению фазы необыкновенной волны, что в методе двулучепреломления визуализируется изменением интенсивности зондирующего пучка в скрещенных поляризаторах [7]. В отличие от предшествующих экспериментов по изучению взаимодействия света с НЖК методом двулучепреломления [5, 8–10], мы используем один пучок как для воздействия на кристалл, так и для регистрации сигнала. Это существенно упрощает эксперимент.

Рис. 1: Схема эксперимента по измерению динамики релаксации директора методом двулучепреломления. (а) Π – поляризатор, A – анализатор, Γ – генератор низкочастотного поля, \mathbf{n}_0 – невозмущённый директор, ψ – угол поворота директора \mathbf{n} , \mathbf{k} и \mathbf{E} – волновой вектор и напряжённость светового поля. (б) φ – угол поворота плоскости поляризации падающего света по отношению к горизонтальной плоскости XY.

Основным измеряемым параметром в нашем эксперименте является скорость релаксации поля директора планарно ориентированного образца, первоначально деформированного низкочастотным электрическим полем (рис. 1). В присутствии светового поля динамика релаксации будет изменяться. При нормальном падении света на планарно ориентированный НЖК с положительной оптической нелинейностью релаксация ускоряется. В случае кристалла с отрицательной оптической нелинейностью релаксация замедляется. Зависимость скорости релаксации от интенсивности света позволяет определить знак оптической нелинейности и величину порога светоиндуцированного перехода Фредерикса. Отметим, что аналогичный способ определения порога был реализован в [11] для перехода Фредерикса в магнитном поле.

Интенсивность I прошедшего через анализатор света зависит от поляризации падающего пучка и набега фазы ΔS между обыкновенной и необыкновенной компонентами [7]

$$I = I_0 \sin^2(2\varphi) \sin^2\left(\frac{\Delta S}{2}\right),\tag{1}$$

где I_0 – интенсивность падающего света, φ – угол между невозмущённым директором и световым полем падающего пучка (рис. 1(б)). Предположим, что распределение угла ψ поворота директора вдоль продольной координаты синусоидально

$$\psi(y) = \psi_m \sin\left(\frac{\pi y}{L}\right),\tag{2}$$

где ψ_m – угол поворота директора в центре жидкокристаллического слоя, L – толщина слоя. Число биений, т.е. число максимумов интерференции обыкновенной и необыкновенной компонент, интенсивности $\left(N = \frac{\Delta S}{2\pi}\right)$ при повороте директора от значения ψ_m до нуля определяется выражением

$$N = \frac{\delta nL}{2\lambda} \psi_m^2,\tag{3}$$

где $\delta n = \frac{\Delta \varepsilon \sqrt{\varepsilon_{\parallel}}}{2\varepsilon_{\perp}}, \Delta \varepsilon = \varepsilon_{\parallel} - \varepsilon_{\perp}$ – анизотропия диэлектрической проницаемости на световой частоте, λ – длина волны света.

Установим связь между интенсивностью воздействующего света и динамикой релаксации поля директора. Функция $\psi(y,t)$ подчиняется уравнению

$$-\gamma_1 \frac{\partial \psi}{\partial t} + K \frac{\partial^2 \psi}{\partial y^2} - \frac{\Delta \varepsilon |A|^2}{8\pi} \sin \psi \cos \psi - \frac{\eta \Delta \varepsilon |A|^2}{8\pi} \sin \psi \cos \psi = 0, \tag{4}$$

которое представляет собой условие баланса моментов, действующих на директор НЖК (γ_1 – коэффициент вязкости, t – время, K – упругая постоянная Франка, A – амплитуда световой волны). Слагаемые уравнения (4) соответствуют моменту вязких сил, моменту упругих сил (в одноконстантном приближении [12]) и моментам $\vec{\Gamma}_{tr}$, и $\vec{\Gamma}_{abs}$. Линеаризуя (4) и используя (2), с помощью метода Галёркина находим

$$\frac{\partial \psi_m}{\partial t} = -[(1+\eta)\delta + 1]\psi_m/\tau_0, \tag{5}$$

где $\tau_0 = \gamma_1 L^2 / \pi^2 K$, $\delta = p/p_0$, p – плотность мощности световой волны, $p_0 = \pi^2 c \varepsilon_{\parallel}^{1/2} K / \Delta \varepsilon L^2$. Уравнение (5) получено для плоской световой волны. В гауссовом световом пучке, однако, плотность мощности зависит от поперечных координат $p \sim \exp(-(x^2 + z^2)/w^2)$ (w – радиус перетяжки пучка). В дальнейшем будем предполагать, что отклик НЖК локален, т.е. угол $\psi_m(x, z)$ определяется значением p в точке (x, z). Тогда (5) останется справедливым и для светового пучка; для угла ψ_m на оси пучка величина δ будет равна

$$\delta = \frac{P}{P_0},\tag{6}$$

13

где P – мощность светового пучка, $P_0 = \pi w_0^2 p_0$. Как следует из (5) и (6), пороговая мощность СПФ в НЖК с отрицательной нелинейностью равна

$$P_{\rm th} = -P_0/(1+\eta).$$
(7)

Полагая, что перед снятием переменного напряжения (при t = 0) угол поворота директора $\psi_m = \psi_m^U$, находим решение (5) в виде

$$\psi_m(t) = \psi_m^U e^{\chi_R t},\tag{8}$$

где скорость релаксации

$$\chi_R = -\frac{1}{\tau_0} \left[(1+\eta) \frac{P}{P_0} + 1 \right].$$
(9)

Из (3) и (7) получаем линейную зависимость логарифма числа биений от времени

$$\ln N(t) = \ln N_U + 2\chi_R t,\tag{10}$$

где N_U – количество биений интенсивности, наблюдаемое после снятия низкочастотного напряжения.

В эксперименте измеряли временные зависимости интенсивности I(t) в центре прошедшего через анализатор светового пучка при различных значениях мощности P пучка, освещающего НЖК. Число биений определяли по максимумам или минимумам функции I(t) с точностью до некоторой величины δN . Величину χ_R определяли методом наименьших квадратов, варьируя δN и добиваясь линейности зависимости $\ln N(t)$. Далее, из аппроксимированной линейной функцией зависимости $\chi_R(P)$ для чистой матрицы определяли мощность P_0 . Для НЖК с отрицательной нелинейностью определяли мощность $P_{\rm th}$ из условия обращения скорости релаксации χ_R в нуль.

Образцы и экспериментальная установка. В эксперименте использовали жидкокристаллический материал ЖКМ-1277 (НИОПИК, Россия), имеющий температурный диапазон существования нематической фазы от -20°C до +60°C. Показатели преломления необыкновенной и обыкновенной волн равны 1.71 и 1.52 ($\lambda = 589$ нм). В качестве легирующей добавки (0.5% по весу) использовали гребнеобразный полимер Pn

с различной степенью полимеризации n = 14, 43, 97. Исследования проводили с легированными и нелегированным планарно ориентированными образцами толщиной 100 мкм.

В видимом диапазоне поглощение легированных НЖК убывает с ростом длины волны. Коэффициенты поглощения необыкновенной и обыкновенной волн для $\lambda = 473$ нм равны $\alpha_{\parallel} = 102$ (P14), 83 (P43), 79 (P97) см⁻¹ и $\alpha_{\perp} = 31$ (P14), 22 (P43), 24 (P97) см⁻¹.

Рис. 2: Схема экспериментальной установки. ДРФ – двойной ромб Френеля, НЖК – ячейка с жидким кристаллом, Г – генератор переменного напряжения, А – анализатор, Э – экран, ПК – компьютер.

Для измерения динамики релаксации директора использовали экспериментальную установку, схема которой изображена на рис. 2. Излучение твёрдотельного лазера (Laser-Export Co.Ltd, $\lambda = 473$ нм), прошедшее через двойной ромб Френеля, фокусировали линзой (f = 15 см, радиус перетяжки пучка в фокусе ~70 мкм) в жидкокристаллическую ячейку. За ячейкой помещали анализатор. Пучок визуализировали на матовом экране. Интенсивность в центре пучка оцифровывали видеосистемой. Плоскость поляризации падающего на кристалл излучения была повёрнута на $\varphi \approx 1^{\circ}$ от плоскости поворота директора (горизонтальной плоскости). Малый угол поворота φ позволил использовать основную часть энергии пучка для переориентации директора НЖК. Ячейку разворачивали вокруг вертикальной оси для компенсации предварительно определённого угла преднаклона.

Для изменения ориентации директора к ячейке прикладывали низкочастотное (3 кГц) напряжение U = 3 В, значительно превышающее величину порога перехода Фредерикса ($U_{\rm th} \sim 0.95$ В). Временные положения максимумов и минимумов осцилляций интенсивности при релаксации директора после снятия напряжения определяли в

автоматическом режиме с помощью специально разработанного программного обеспечения.

Рис. 3: Характерная зависимость интенсивности в центре пучка ($\lambda = 473$ нм, P = 1 мВт) на экране при релаксации директора, полученная для прозрачного планарного образца ЖКМ-1277. Изменение амплитуд максимумов и минимумов связано с изменением интенсивности необыкновенной волны вследствие аберрационного самовоздействия света.

Рис. 4: Зависимость логарифма числа биений интенсивности от времени (релаксация директора НЖК) в прозрачном образце ЖКМ-1277 для различных мощностей облучения P: (1) 1 и (2) 43 мВт.

Экспериментальные результаты. Характерная временная зависимость интенсивности I(t), полученная для прозрачной матрицы, представлена на рис. 3. Примеры аппроксимации зависимости $\ln N(t)$ по положениям максимумов I(t) для двух значений мощности светового пучка P = 1 и 43 мВт приведены на рис. 4. Как видно из рис. 4, при достаточно большой мощности (кривая 2) динамика релаксации на среднем участке не вполне соответствует экспоненциальной зависимости. Это может быть связано с ограниченностью светового пучка и отклонением продольного распределения поля директора от синусоидального.

Рис. 5: Зависимость скорости релаксации от мощности для (a) прозрачного образца и (б) образца, легированного P43.

Зависимости скорости релаксации от мощности светового пучка для прозрачного НЖК и НЖК, легированного полимером Р43, представлены на рис. 5. Видно, что эти зависимости достаточно хорошо описываются линейной функцией. Из условия, что при $P = P_0$ скорость релаксации в прозрачном НЖК (рис. 5(а)) возрастает в два раза (см. (9)), находим $P_0 = 44$ мВт. Для матрицы с примесью Р43 (рис. 5(б)) получаем $P_{\text{th},43} \approx 1.6$ мВт из условия обращения скорости релаксации в нуль. Для других образцов значения порогов составили $P_{\text{th},14} = 2.5$ мВт и $P_{\text{th},97} = 1.1$ мВт.

Пороги СПФ были также определены методом аберрационного самовоздействия. Для НЖК с примесью P14 наблюдался гистерезис зависимости числа колец от мощности, соответствующий ориентационному переходу первого рода и бистабильности поля директора [13–15]. При этом порог прямого перехода составил $P_{\text{th1,14}} = 3.3$ мВт, а обратного – $P_{\text{th2,14}} = 2.2$ мВт. Для образцов P43 и P97 были получены значения $P_{\text{th,43}} = 1.4$ мВт и $P_{\text{th,97}} = 1.1$ мВт. Таким образом, величины порогов, определённых различными методами для P43 и P97, хорошо согласуются. В случае P14 определённый методом двулучепреломления порог оказывается близок к порогу обратного перехода.

Полученные результаты позволяют по формуле (7) оценить фактор усиления нелинейности η в легированных образцах по сравнению с прозрачной матрицей: $\eta = -19$ (P14), -28 (P43) и -41 (P97). Эти значения могут быть занижены, т.к. в рассмотренной выше модели не учитывали ослабление излучения в НЖК вследствие затухания. Кроме того, поскольку для азосоединений характерна зависимость фактора усиления от угла между световым полем **E** и директором **n**, мы получаем усреднённые значения η .

Нелинейно-оптический отклик НЖК целесообразно характеризовать отношением фактора усиления к величине поглощения, усреднённого по ориентациям директора: $\eta_{\alpha} = \eta/(\alpha_{\parallel} + 2\alpha_{\perp})$ [3]. Соответствующие величины $\eta_{\alpha,14} = -0.12$ см, $\eta_{\alpha,43} = -0.22$ см, $\eta_{\alpha,97} = -0.32$ см. Максимальное из этих значений примерно в три раза меньше, чем величина, наблюдавшаяся для полимера П1 в [3].

Отметим, что измерение динамики двулучепреломления в световом пучке, воздействующем на НЖК, может быть использовано при изучении фоторефрактивного эффекта и поверхностной фотоориентации.

Заключение. Показано, что метод двулучепреломления с использованием одного светового пучка может быть применён для исследования ориентационного воздействия света на жидкие кристаллы. Метод позволяет измерять порог светоиндуцированного перехода Фредерикса и определять фактор усиления нелинейности, используя световое излучение допороговой мощности.

Авторы выражают благодарность В.Н. Очкину за полезные обсуждения. Работа выполнена при поддержке РФФИ (проекты 11-02-01315, 12-02-31348, и 12-03-00480), ФЦП "Научные и научно-педагогические кадры инновационной России" (проекты 8620 и 8396) и УНК ФИАН.

ЛИТЕРАТУРА

- [1] I. C. Khoo, Phys. Rep. **471**, 221 (2009).
- [2] L. Marrucci, D. Paparo, Phys. Rev. E 56, 1765 (1997).
- [3] И. А. Будаговский, А. С. Золотько, В. Н. Очкин и др., ЖЭТФ **133**, 204 (2008).
- [4] А. С. Золотько, В. Ф. Китаева, Н. Н. Соболев, А. П. Сухоруков, ЖЭТФ 81, 933 (1981).

- [5] S. Durbin, S. M. Arakelian, Y. R. Shen, Phys. Rev. Lett. 47, 1411 (1981).
- [6] O. Yaroshchuk, Y. Reznikov, J. Mater. Chem. 22, 286 (2012).
- [7] Л. М. Блинов, Электрооптика и магнитооптика жидких кристаллов (М., Наука, 1978).
- [8] I. Janossy, L. Szabados, Phys. Rev. E 58, 4598 (1998).
- [9] S. J. Hwang, S.-T. Lin, C.-H. Lai, Opt. Commun. 260, 614 (2006).
- [10] Е. А. Коншина, М. А. Федоров, Л. П. Амосова, Ю. М. Воронин, Научнотехнический вестник информационных технологий, механики и оптики 43, 1277-135 (2007).
- [11] P. Pieranski, F. Brochard, E. Guyon, J. Phys. **33**, 681 (1972).
- [12] П. де Жен, Физика жидких кристаллов (М., Мир, 1977).
- [13] Э. А. Бабаян, И. А. Будаговский, А. С. Золотько и др., Краткие сообщения по физике ФИАН 37, 46 (2010).
- [14] E. A. Babayan, I. A. Budagovsky, S. A. Shvetsov, et al., Phys. Rev. E 82, 061705 (2010).
- [15] I. A. Budagovsky, D. S. Pavlov, S. A. Shvetsov, et al., Cryst. Liq. Cryst. 561, 89 (2012).

Поступила в редакцию 5 декабря 2012 г.