УДК 539.1.07

ОРИЕНТАЦИОННЫЕ ЗАВИСИМОСТИ ОТКЛИКА ЭЛЕКТРОМАГНИТНОГО СПЕКТРОМЕТРА С КОНВЕРТЕРОМ ИЗ ОРИЕНТИРОВАННОГО КРИСТАЛЛА

В. А. Басков^{1*}, В. В. Ким¹, Б. И. Лучков²,
В. Ю. Тугаенко², В. А. Хабло¹

Представлены экспериментальные результаты исследования ориентационных зависимостей отклика составного черенковского ливневого спектрометра с конвертером из 1 мм ориентированного вдоль оси (111) кристалла вольфрама при энергии электронов 28 ГэВ и двух температурах конвертора 293 и 77 К. Параметры каскадной кривой развития ливня изменяются в зависимости от угла ориентации и температуры кристалла. Обнаружено, что на каскадной кривой развития ливней в спектрометре существует точка S, в которой пересекаются все каскадные кривые при любой ориентации конвертора. Положение данной точки на глубине спектрометра зависит от температуры конвертора.

Ключевые слова: электромагнитные ливни, ориентация, кристаллы, высокие энергии.

Аномальные электромагнитные ливни от электронов (позитронов) и γ -квантов с энергиями E > 100 МэВ, развивающиеся в полях осей и плоскостей ориентированных кристаллов, отличаются от *стандартных* ливней и вызывают в спектрометре, который их регистрирует, отклик, отличный от обычного. Основное отличие заключается в зависимости положений и форм каскадной и интегральной кривых развития ливня в спектрометре от энергии частиц, типа и температуры кристалла, толщины кристалла и в наличии ориентационной зависимости [1–4].

¹ ФИАН, 119991 Россия, Москва, Ленинский пр-т, 53; e-mail: baskov@x4u.lebedev.ru.

² Национальный исследовательский ядерный университет "МИФИ", 115409, Россия, Москва, Каширское шоссе, 31.

В ряде работ представлены ориентационные зависимости множественности заряженных частиц и энерговыделения в отдельных счетчиках и детекторах, находящихся за кристаллом [5–8]. Исключая пионерскую работу авторов данной статьи [9], связанную с исследованием влияния электромагнитного ливня от электронов 28 ГэВ, выходящего из ориентированного 1 мм кристалла вольфрама при температуре 77 К, на отклик электромагнитного спектрометра типа *сэндвич*, картина изменений каскадной и интегральной кривых в спектрометре при ориентации кристаллического конвертора отсутствует.

Данная работа посвящена исследованию ориентационной зависимости параметров каскадной кривой развития электромагнитного ливня от электронов в спектрометре, находящемся за кристаллическим конвертором.

Работа была выполнена на установке "Каскад" на электронном канале ускорителя ИФВЭ в рамках программы "*Квантовая электродинамика в сильных полях ориентированных кристаллов*".

Исследование электромагнитных ливней осуществлялось с помощью составного черенковского ливневого спектрометра (СЧЛС), характеристики которого приведены в [10–12].

В качестве конвертора использовался кристаллический вольфрам толщиной 1 мм или $0.28X_0$ ($X_0 = 3.5$ мм – радиационная длина вольфрама). Ориентация кристалла осуществлялась относительно оси (111), кристалл считался разориентированным при $\Theta \ge 23$ мрад. Мозаичность кристалла составляла $\Delta\Theta_W \approx 1$ мрад. В эксперименте использовался пучок электронов с энергией E = 28 ГэВ с расходимостью $|v| \le 0.1$ мрад по основанию [10, 11]. Исследования ориентационной зависимости параметров каскадной кривой в СЧЛС проводились при комнатной температуре кристалла $T_1 = 293$ К и температуре жидкого азота $T_2 = 77$ К [2, 13].

На рис. 1 приведены каскадные кривые развития электромагнитных ливней в СЧЛС при различных углах Θ между импульсом электронов и осью кристалла (111) при температурах кристалла T_1 (рис. 1(а)) и T_2 (рис. 1(б)). На рисунке представлена также калибровочная кривая (1) при отсутствии кристалла перед СЧЛС. Видно, что при помещении перед СЧЛС разориентированного кристалла каскадная кривая сдвигается в сторону начала развития ливня, то есть в кристалл. В этом случае меняется только положение каскадной кривой без изменения энерговыделения по глубине развития электромагнитного ливня в СЧЛС [3, 14].

При уменьшении угла входа электронов в кристалл Θ изменяются все параметры каскадной кривой: энерговыделения на разных глубинах развития ливня в счетчиках

Рис. 1: Каскадные кривые развития электромагнитного ливня в СЧЛС от электронов с энергией E = 28 ГэВ при различных углах ориентации Θ оси (111) 1 мм кристаллического вольфрамового конвертора относительно пучка электронов (температура конвертора: (a) $T_1 = 293$ K; (b) $T_2 = 77$ K; (ΔE) – средняя энергия ливня, выделившаяся в каждом счетчике СЧЛС; t_W и t_{CCSS} – толщины кристалла и СЧЛС, соответственно; 1 – кристалл перед СЧЛС отсутствует; 2 – Θ = 45 мрад; 3 – Θ = 8 мрад; 4 – Θ = 4 мрад; 5 – Θ = 0 мрад; S – точка пересечения каскадных кривых при ориентации конвертора).

Рис. 2: Ориентационные зависимости радиационной длины X'_0 1 мм кристаллического вольфрамового конвертора при температурах $T_1 = 293$ K (1) и $T_2 = 77$ K (2)(3 – радиационная длина аморфного вольфрама).

СЧЛС, положение максимума и величина энерговыделения в максимуме развития ливня. Однако разные части каскадной кривой изменяются по-разному. По мере уменьшения угла энерговыделение в счетчиках СЧЛС до максимума каскадной кривой и в максимуме каскадной кривой начинает увеличиваться, а энерговыделение в счетчиках за максимумом каскадной кривой – уменьшаться. Предельные величины увеличения и уменьшения энерговыделения достигаются при достижении полной ориентации ($\Theta = 0$). Такой результат наблюдается при обеих исследованных температурах кристалла.

Одним из отличий *аномальных* ливней от *стандартных* является зависимость радиационной длины ориентированного кристалла от энергии электронов (позитронов) или *γ*-квантов, толщины и температуры кристалла [1–4].

Радиационная длина кристалла X'_0 при некотором угле ориентации Θ конвертора определяется как $X'_0 = X_0(t_W/t_{Weff})$, где t_W – толщина кристалла вольфрама $t_W =$ $0.28X_0, t_{Weff} = t_W + \Delta t$ – эффективная толщина кристалла при угле ориентации Θ $(t_{Weff}$ – толщина, на которой происходит наиболее эффективное взаимодействие частиц с конвертором), $\Delta t = t_{\text{max d}} - t_{\text{max o}}$ – разность положений максимума каскадной кривой в спектрометре при разориентированном кристалле $t_{\text{max d}}$ и при угле ориентации $\Theta t_{\text{max o}}$ [2, 14].

На рис. 2 представлены ориентационные зависимости радиационной длинны X'_0 1 мм кристаллического вольфрамового конвертора при двух температурах T_1 (кривая 1) и T_2 (кривая 2). Если считать, что при углах разориентации конвертора, близких к $\Theta = 45$ мрад, $X_0 = 3.5$ мм, то рис. 2 показывает, что при ориентации ($\Theta = 0$) и при $T_1 X'_0 = 1.21 \pm 0.15$ мм (1), а при $T_2 X'_0 = 0.91 \pm 0.11$ мм (2) [2]. Ширины ориентационных зависимостей соответственно составили $\Delta \Theta \approx 10$ мрад (1) и $\Delta \Theta \approx 24$ мрад (2) (ширина ориентационной зависимости какого-либо параметра ливня $\Delta \Theta$ определяется как ширина ориентационной зависимости параметра на половине ее высоты).

На рис. 1 также видно, что при температурах T_1 и T_2 и всех ориентациях конвертора, исключая каскадную кривую при отсутствии конвертора перед СЧЛС, все каскадные кривые после максимума развития ливней пересекаются в одной точке S. Аналогичная точка наблюдалась и при развитии ливней в *сэндвиче* [9]. Точка S определяется единой величиной энерговыделения для всех каскадных кривых. При данной энергии, типе и толщине кристалла положение S зависит только от температуры кристалла: при T_1 точка S находится на $t_{CCSS} = 8.4X_0 \pm 0.1X_0$, а при T_2 на $t_{CCSS} = 9.2X_0 \pm 0.1X_0$ (t_{CCSS} глубина СЧЛС в радиационных длинах).

Таким образом, параметры каскадных кривых аномальных электромагнитных ливней, возникающих в кристаллическом вольфрамовом конверторе от электронов с энергией 28 ГэВ и продолжающих развиваться в СЧЛС, зависят от угла ориентации конвертора относительно кристаллографической оси и температуры конвертора. Определено, что ширины ориентационных зависимостей радиационной длины конвертора при температурах конвертора 293 и 77 К составили около 10 мрад и 24 мрад, соответственно. При развитии ливней в СЧЛС, выходящих из конвертора, существует точка *S*, в которой независимо от угла ориентации для всех каскадных кривых существует одинаковое энерговыделение. Положение точки *S* на глубине СЧЛС при данной энергии электронов и типе конвертора зависит от температуры.

Авторы выражают благодарность Е. И. Тамму и Е. И. Малиновскому за поддержку работы, В. И. Сергиенко за помощь в организации работы.

ЛИТЕРАТУРА

- [1] U. I. Uggerhoj, Reviews of Modern Physics 77, 1131 (2005).
- [2] В. А. Басков, В. В. Ким, Б. И. Лучков, В. Ф. Тугаенко, Препринт ФИАН N 35 (Москва, ФИАН, 2011).
- [3] В. А. Басков, Препринт ФИАН N 36, (Москва, ФИАН, 2011).
- [4] V. A. Baskov, V. A. Khablo, V. V. Kim, et al., Nucl. Instr. and Meth. in Phys. Res., B145, 92 (1998).
- [5] K. Elsener, S. P. Moller, J. B. B. Petersen, and E. Uggerhoj, Phys. Lett. B212, 537 (1988).
- [6] R. Medenwaldt, S. P. Moller, S. Tang-Petersen, et al., Phys. Lett. **B227**, 483 (1989).
- [7] R. Medenwaldt, S. P. Moller, S. Tang-Petersen, et al., Phys. Lett. **B242**, 517 (1990).
- [8] В. А. Басков, В. В. Ким, Б. И. Лучков, В. Ю. Тугаенко, Препринт ФИАН N 14 (Москва, ФИАН, 2012).
- [9] V. A. Baskov, V. A. Khablo, V. V. Kim, et al., Radiation Effects and Defects in Solids 25, 23 (1993).
- [10] В. А. Басков, В. В. Ким, В. А. Сергиенко, В. А. Хабло, ПТЭ N 5, 58 (1990).
- [11] В. А. Басков, В. В. Ким, В. А. Хабло, ПТЭ N 4, 13 (2010).
- [12] В. А. Басков, Препринт ФИАН N 9 (Москва, ФИАН, 2012).
- [13] В. А. Басков, В. Б. Ганенко, Ю. В. Жебровский и др., Тезисы докладов XIX Всесоюзного совещания по физике взаимодействия заряженных частиц с кристаллами (Москва, МГУ, 1989), с. 84.
- [14] В. А. Басков, В. В. Ким, Б. И. Лучков и др., Препринт ФИАН N 31 (Москва, ФИАН, 2006).

Поступила в редакцию 6 июля 2012 г.