УДК 532.783

ФОРМИРОВАНИЕ СВЕТОВОГО ПУЧКА С ВИНТОВОЙ ДИСЛОКАЦИЕЙ ВОЛНОВОГО ФРОНТА ПРИ ФОТОРЕФРАКТИВНОМ ЭФФЕКТЕ В НЖК

И. А. Будаговский¹, А. С. Золотько¹, М. П. Смаев¹, С. А. Швецов^{1,2}

Осуществлена генерация светового пучка с винтовой дислокацией волнового фронта с помощью нематического жидкого кристалла, находящегося под воздействием постоянного электрического поля. Аксиальносимметричная деформация поля директора, необходимая для возникновения такого пучка, возникает вследствие светоиндуцированного снятия экранировки постоянного поля поверхностными электрическими зарядами.

Ключевые слова: нематический жидкий кристалл, винтовая дислокация волнового фронта, фоторефрактивный эффект.

Введение. Световые пучки с винтовой дислокацией волнового фронта (ПВД) представляют интерес для микроманипулирования [1, 2], обработки и передачи оптической информации [3], получения изображений астрономических объектов [4]. Такие пучки относятся к свободным модам пространства, характеризуются наличием орбитального углового момента и минимумом интенсивности на оси пучка.

Для получения ПВД используются различные среды, в том числе нематические жидкие кристаллы (НЖК). Нематики являются сильноанизотропными средами, причём направлением оптической оси (директором) можно легко управлять внешними воздействиями. Ячейка с НЖК, имеющая аксиально-симметричную деформацию директора (на оси симметрии при этом будет наблюдаться дефект ориентации молекул), позволяет трансформировать гауссовы пучки в пучки с винтовой дислокацией волнового фронта. В работах [5, 6] предлагается создавать дефекты ориентации в жидкокристаллической ячейке за счет специальной обработки ориентирующих подложек. Для получения ПВД можно использовать естественные дефекты в неориентированном слое

¹ ФИАН, 119991 Россия, Москва, Ленинский пр-т, 53; e-mail: smayev@lebedev.ru.

² Московский физико-технический институт, 141700 Россия, Московская область, Долгопрудный, Институтский пер., 9.

НЖК [7], дефекты, возникающие при локальном нагреве световым пучком [8], а также ориентационные дефекты в объеме НЖК, возникающие при сильной фокусировке светового пучка [9].

Аксиально-симметричная деформация поля директора НЖК, необходимая для формирования ПВД, может быть получена при одновременном приложении электрического и светового полей. Так, в [10] использовался гомеотропно ориентированный НЖК с отрицательной низкочастотной анизотропией, на одну из подложек которого был нанесен слой фотопроводника. К ячейке прикладывалось допороговое низкочастотное поле, изначально не приводившее к переориентации директора. Однако при освещении образца в фотопроводнике генерировались заряды и происходило усиление электрического поля до надпорогового значения. Деформация поля директора имела аксиальную симметрию вследствие гауссова распределения световой интенсивности.

В настоящей работе получен световой пучок с винтовой дислокацией волнового фронта при одновременном приложении к гомеотропному НЖК постоянного электрического и светового полей. Аксиально-симметричное поле директора формируется вследствие поверхностного фоторефрактивного эффекта [11–13], обусловленного переориентацией директора за счет частичного снятия экранировки постоянного поля поверхностными зарядами.

Установка и экспериментальные результаты. Использовался нематический жидкий кристалл ЖКМ-1277 гомеотропной ориентации толщиной L = 100 мкм. Подложки жидкокристаллической ячейки были покрыты токопроводящим слоем ITO. Исследования проводились при комнатной температуре.

Рис. 1: Схема экспериментальной установки. 1 – твердотельный лазер ($\lambda = 532$ нм), 2 и 6 – четвертьволновые пластинки, 3 – линза, 4 – ячейка с нематическим жидким кристаллом, 5 – источник постоянного напряжения, 7 – анализатор, 8 – экран.

Схема экспериментальной установки представлена на рис. 1. Световой пучок линейной поляризации с длиной волны $\lambda = 532$ нм от твердотельного лазера 1 проходил через четвертьволновую пластинку 2, преобразовывающую линейную поляризацию в циркулярную, и фокусировался линзой 3 с фокусным расстоянием f = 10 см на ячейке с НЖК 4. К подложкам ячейки прикладывалось постоянное напряжение. За жидкокристаллической ячейкой были установлены четвертьволновая пластинка 6 и анализатор 7. Поперечное распределение интенсивности поляризационных компонент светового пучка наблюдалось на экране 8.

Приложенное к НЖК постоянное электрическое поле экранируется приповерхностными зарядами. В освещаемой области электрическое поле проникает в объём НЖК в соответствии с профилем интенсивности пучка, что приводит к аксиально-симметричной деформации поля директора. При прохождении циркулярнополяризованного пучка через такую структуру формируется пучок с винтовой дислокацией волнового фронта.

Рис. 2: Экспериментальные ((a)-(г)) и теоретические ((d)-(ж)) распределения интенсивности в дальней зоне после анализатора: (a) в скрещенных поляризаторах (в отсутствие четвертьволновых пластинок), ((б), (d)) – базовая часть излучения, ((в), (е)) – пучок с винтовой дислокацией волнового фронта, ((г), (ж)) – интерференция базовой компоненты пучка и ПВД (промежуточное положение анализатора). Угловой размер картин – 0.02 рад.

При мощности светового пучка P = 1.5 мВт и напряжении U = 2 В, в отсутствие пластинок 2 и 6 (рис. 1) на экране наблюдалась характерная картина в виде креста (рис. 2(a)). С установленной четвертьволновой пластинкой 2, дающей циркулярную поляризацию из исходной линейной, световой пучок в НЖК частично конвертировался в ПВД, при этом направление циркулярной поляризации для ПВД изменялось на противоположное. После прохождения пластинки 6 поляризации гауссова пучка и ПВД становились линейными и были расположены в ортогональных плоскостях. Вращая анализатор 7, можно наблюдать распределение интенсивности базовой компоненты (дифрагировавшего на дефекте гауссова пучка, рис. 2(б)), ПВД (рис. 2(в)), а также результат их интерференции (рис. 2(г)). Отметим, что данный эффект наблюдается в широком диапазоне оптических мощностей (1 мВт $\leq P \leq 25$ мВт) и прикладываемых напряжений (1 В $\leq U \leq 4$ В).

Рис. 3: Переориентация директора в ячейке с НЖК при поверхностном фоторефрактивном эффекте. Проникающее в объём НЖК внешнее постоянное поле моделируется полем положительного точечного заряда Q. AA' и BB' – условные границы светового пучка. ψ_m – угол поворота директора в центральной плоскости НЖК на расстоянии r до оси пучка.

Обсуждение. Поскольку светоиндуцированное снятие экранирования происходит преимущественно на одной подложке (анодной) [13], а степень снятия определяется интенсивностью излучения, то результирующее проникающее поле можно аппроксимировать полем точечного заряда Q, расположенного вблизи анодной поверхности НЖК (рис. 3). Такое поле будет формировать аксиально-симметричное распределение деформации директора в объеме НЖК в соответствии с направлением проникающего электрического поля. Угол ψ_m отклонения директора от исходного направления равен нулю на оси пучка и на его периферии, но принимает ненулевое значение в некоторой окрестности оси пучка.

Рис. 4: Распределение дополнительного набега фазы S для необыкновенной компоненты светового поля. w₀ – радиус перетяжки падающего светового пучка.

Расчет поперечного распределения интенсивности проводился с помощью соотношений, приведённых в работе [8]. Эти соотношения связывают распределение интенсивности пучка, прошедшего фазовую пластинку, с профилем фазового набега S в поперечном сечении пучка. Поперечное распределение дополнительного набега фазы, обусловленного деформацией директора в проникающем электрическом поле при локальном светоиндуцированном снятии его экранировки, имеет вид, представленный на рис. 4. Результаты расчетов, приведенные на рис. 2((д)-(ж)), хорошо согласуются с экспериментом.

Заключение. Предложена и реализована методика формирования пучков с винтовой дислокацией волнового фронта с помощью фоторефрактивного эффекта в жидких кристаллах. Необходимое аксиально-симметричное распределение деформации поля директора создавалось в результате переориентации директора НЖК при светоиндуцированном снятии экранировки внешнего постоянного поля.

Авторы благодарны В.Н. Очкину за полезные обсуждения. Исследование выполнено за счет гранта Российского научного фонда (проект № 14-12-00784).

ЛИТЕРАТУРА

[1] N. B. Simpson, K. Dholakia, L. Allen, M. J. Padgett, Opt. Lett. 22, 52 (1997).

[2] M. Dienerowitz, M. Mazilu, P. J. Reece, et al., Opt. Express 16, 4991 (2008).

- [3] G. Molina-Terriza, J. P. Torres, L. Torner, Nature Phys. 3, 305 (2007).
- [4] G. Foo, D. M. Palacios, G. A. Swartzlander, Opt. Lett. **30**, 3308 (2005).
- [5] L. Marrucci, C. Manzo, D. Paparo, Phys. Rev. Lett. **96**, 163905 (2006).
- [6] L. Marrucci, Mol. Cryst. Liq. Cryst. 488, 148 (2008).
- [7] C. Loussert, U. Delabre, E. Brasselet, Phys. Rev. Lett. 111, 037802 (2013).
- [8] И. А. Будаговский, А. С. Золотько, Д. Л. Коршунов и др., Опт. и спектроск. 119, 295 (2015).
- [9] E. Brasselet, Opt. Lett. **34**, 3229 (2009).
- [10] R. Barboza, U. Bortolozzo, G. Assanto, et al., Phys. Rev. Lett. 109, 143901 (2012).
- [11] P. Pagliusi, G. Cipparrone, J. Appl. Phys. **93**, 9116 (2003).
- [12] A. S. Zolot'ko, I. A. Budagovsky, V. F. Kitaeva, et al., Mol. Cryst. Liq. Cryst. 454, 407 (2006).
- [13] И. А. Будаговский, А. С. Золотько, М. П. Смаев, М. И. Барник, ЖЭТФ 138, 150 (2010).

Поступила в редакцию 22 апреля 2015 г.