УДК 534.16

УПРУГИЕ СВОЙСТВА КЕРАМИК ВТСП

В. Н. Никифоров¹, Н. А. Булычев², В. В. Ржевский¹

Рассматриваются упругие свойства керамик разных классов высокотемпературных сверхпроводников (ВТСП) на основе экспериментальных данных. Проведён анализ влияния пористости для керамик ВТСП.

Ключевые слова: высокотемпературные сверхпроводники, упругие модули, акустические измерения, структурные фазовые переходы, сверхпроводимость.

Исследованию акустических свойств ВТСП посвящено значительное число работ, опубликован ряд актуальных обзоров [1–3]. Особый интерес вызывают работы, посвященные аномалиям упругих свойств высокотемпературных сверхпроводников в нормальной и сверхпроводящей фазах, связанные со структурными фазовыми превращениями в ВТСП, что может служить указанием на возможные механизмы реализации высокотемпературной сверхпроводимости. Предположение авторов открытия Беднорца и Мюллера [4] (в совместной работе с К. Фоссхаймом) о том, что определяющую роль в генезисе высокотемпературной сверхпроводимости играет смягчение фононных мод в области температур, близких к температуре структурного фазового перехода, получило развитие в многочисленных исследованиях, ориентированных на обнаружение структурных фазовых превращений. Были обнаружены аномалии на температурных зависимостях скоростей звука и затухания (упругих модулей и внутреннего трения) в области температур выше и ниже температуры сверхпроводящего перехода T_c. К сожалению, наличие противоречий в данных по акустическим аномалиям в ВТСП не приближает нас к пониманию природы явления. Причина противоречий, по-видимому, заключается в объективных трудностях работы с ВТСП-керамиками и ВТСП-монокристаллами малых размеров, а также в сложности самого объекта исследования, в котором помимо сверхпроводящего перехода могут иметь место структурные неустойчивости кристаллической решетки, а также ориентационные фазовые переходы [5, 6]. Отличаются ВТСП соединения и с точки зрения строения кристаллической структуры по сравнению с классическими сверхпроводниками и нормальными металлами, прежде всего,

¹ Физический факультет МГУ им. М. В. Ломоносова; e-mail: nvn@lt.phys.msu.ru.

 $^{^2}$ ФИАН 119991 Россия, Москва, Ленинский пр-т, 53; e-mail: nbulychev@mail.ru.

значительными размерами параметров решеток, которые могут достигать нескольких десятков ангстрем. Помимо этого, для ВТСП материалов типичны слоистая структура с существенной анизотропией свойств, большое количество фононных аномалий, сингулярностей упругих и акустических свойств: в поглощении и скорости ультразвука; в поведении упругих модулей; в необычном влиянии магнитного поля на скорость, в заметных изменениях структурных параметров вблизи T_c ; в формировании страйпов (полос) в области сверхпроводящих плоскостей и т.д. [7]. Своеобразие ВТСП, как объекта ультразвуковых исследований, заключается также и в том, что, в отличие от классических металлических "низкотемпературных" сверхпроводников, соединения ВТСП чаще всего имеют структуру анизотропных керамик или упругоанизотропных поликристаллов.

Ключ к пониманию многочисленных, порой неоднозначных экспериментальных данных, возможно, лежит в установлении взаимосвязи между акустическими свойствами объектов ВТСП и такими их характеристиками, как условия приготовления, термообработка, микроструктура образцов, плотность образцов, начальная стехиометрия по кислороду и ее изменения, присутствие посторонних фаз и включений, концентрация линейных и двумерных дефектов. Приводимые ниже сведения по упругим свойствам систем ВТСП основаны на широком круге работ, включающих исследования ВТСП соединений. Механические свойства являются важными параметрами, определяющими возможность использования ВТСП в приборных устройствах. Такие параметры как твердость, модули упругости, скорость звука, во многом определяются технологическими условиями синтеза и термообработки ВТСП соединений [8, 9]. Важной характеристикой является плотность керамик. Так, упругие модули материалов ВТСП-керамик меньше в "рыхлых" керамиках с высоким коэффициентом пористости. Кроме того установлена зависимость упругих свойств от условий отжига [10]. К определенным затруднениям при механических испытаниях приводит хрупкость материала керамик ВТСП. Например, способность к образованию микротрещин у YBa₂Cu₃O_{7-x} более высокая, чем у перовскита BaTiO₃, имеющего сходную кристаллическую структуру.

Повышенная влажность среды приводит к медленному разрушению ВТСП-керамик YBaCuO за счет роста трещин, что подтверждается опытами по определению твердости материала по Виккерсу. В воде длина трещины значительно превосходит аналогичную длину для образца, исследованного в воздухе. Из данного опыта можно сделать вывод о том, что влажность интенсифицирует рост трещин, что и приводит к медленному разрушению ВТСП-керамик YBa₂Cu₃O_{7-x}. Ряд трудностей при проведении экспериментов по исследованию механических свойств возникает из-за определенной "капризности" объекта исследования: имеются сообщения о влиянии на результаты эксперимента таких факторов, как состав газовой среды, окружающей образец (преимущество отдается гелию-4) [10], термоциклирование [11], возникновение термических градиентов [12], механических напряжений, границ двойникования [13] и ряда других факторов.

Приводим таблицы 1, 2 упругих характеристик ВТСП-керамик. Таблицы 1, 2 содержат экспериментальные данные, основанные на работах, номера ссылок на которые указаны в первой графе. Значения всех параметров приводятся для комнатной температуры, если это не оговорено особо (в этом случае температура указана в скобках). Значения частоты f указаны в мегагерцах, величины скоростей продольного ν_l и поперечного ν_l ультразвука – в 10³ м/с. Значения модулей объемного сжатия B, B_0 , модулей сдвига G, G_0 , Юнга E, E_0 приведены в ГПа. Индекс 0 соответствует нулевой пористости, p = 0%, учет пористости и был произведен по формулам Маккензи [14]. Индексы "э", "п", "У" в графе "работа" таблиц 1, 2 означают соответственно экспериментальные данные, пересчет на нулевую пористость и учет температурной зависимости скорости звука. (Последнее проведено по данным работы [2].) Содержание кислорода указывается индексом x, коэффициент Пуассона обозначен ν . Обозначение экспериментальных методов следующее: 1 – эхоимпульсный метод; 2 – вибрационный метод; 3 – метод составного резонатора; 4 – метод фазового детектирования; 5 – метод суперпозиции импульсов; 6 – метод стоячих волн.

Как следует из табл. 1–2, использование пересчета значений скоростей ультразвука и упругих модулей на нулевую пористость уменьшает разброс экспериментальных данных. Средние значения скоростей продольного ν_l и поперечного ν_t звуков для реальной пористости для 300 K соответственно:

$$u_l = 4.49 \cdot 10^3 \text{m/c}; \ \nu_t = 2.77 \cdot 10^3 \text{m/c}.$$

Среднеквадратичные отклонения от средних значений равны соответственно:

$$\Delta \nu_l = 0.23 \cdot 10^3 \,\mathrm{m/c}; \ \Delta \nu_t = 0.12 \cdot 10^3 \,\mathrm{m/c}.$$

Для случая упругоанизотропной поликристаллической керамики $YBa_2Cu_3O_{7-x}$ в работе [30] получены значения скорости звука при комнатной температуре (табл. 3).

Влияние гидростатического сжатия на поликристаллы $YBa_2Cu_3O_{7-x}$, $GdBa_2Cu_3O_{7-x}$, $EuBa_2Cu_3O_{7-x}$ с различной пористостью изучалось в работе [11]. Результаты измерений упругих параметров (при T = 295 K), реальные и пересчитанные с учетом пористости p керамик, приведены в табл. 4.

Таблица 1

			IDw	20430	i-x			
Работа	Метод	$f, M\Gamma$ ц	p, %	x	$ u_t $	$ u_{l0} $	$ u_t $	$ u_{t0} $
8			12.9		4.87	5.27	2.76	2.98
			32.6		3.63		2.06	
15	5	20	15		4.7			
16	1	5-10	37	0	4.27		2.56	
17		3—4	32		4.32		2.35	
18	1	5	6	0	4.121	4.247	2.583	2.672
У					(5 K)	4.066	(5 K)	2.528
					3.96		2.444	
19	3	40	15 - 18					
20	1	10, 30	8		4.4 ч	4.58	29	3.05
У					(200 K)	4.48	(200 K)	2.96
					4.3		2.82	
21	1	10, 30	22		3.48		2.01	
У					(250 K)		(250 K)	
					3.42		1.96	
			8		4.98	5.21	2.91	3.04
					(250 K)		(250 K)	
У					4.89	5.12	2.84	2.97
22	4	50	3		4.26	4.32	2.77	2.81
23	3	43.5	40				1.9	
24	1	10	15		4.664		2.783	
		5	18		4.067		2.507	
		5	5.6		4.537	4.66	2.893	2.99
25	1	≤ 25	28	0.03			2.3	
			24	0.15			2.41	
26	1	10	6		4.338			
27	1	70	10		2.17			
			5		3.52	3.61	2.17	2.23
					$(220 {\rm K})$		(220 K)	
У					3.45	3.45	2.11	2.17
28	1	10	30		3.14			
29	6		7	0.1	4.5			
			12	0.8	4.9			

 $YBa_2Cu_3O_{7-x}$

Таблица 2

				2	0 1 2				
Работа	T_c	G	G_0	В	B_0	Е	E_0	ν	ν_0
8 п		42.3	56.5	75.4	101.6	107.0	143.0	0.26	0.27
п			56.6		102		143		0.26
п			54.6		101		139		0.27
Э		42.4		75.5		107		0.26	
Э		18.3		32.4		46.1		0.26	
15	91								
16		26.3		38.2		64.2		0.22	
17		35		72		91			
18 э		50.9					107.2		
п		40.0	45.5	48.5	54.4	94.1	106.8	0.18	0.17
19		39		104		115			
20 п		49.4	59.2	47.8	54.9	110.2	130.6	0.12	0.11
21 п		20.1		33.5		50.3		0.25	
Э	91			33.6				0.25	
п		49.7	59.0	79.3	94.5	123.3	146.4	0.24	0.24
Э	86			79				0.24	
22		47.5	50.6	49.0	51.7	107.7	114.4	0.13	0.13
23									
24 э		42.0		62.0		102.8		0.22	
Э		32.9		42.7		78.5		0.19	
Э		50.4		56.8		116.7		0.16	
П			56.9		62.9		131.2		0.15
25	90								
		82							
26	90.5								
27 э	85	28.5		37.0		68.1		0.19	
п			31.7		40.9		75.6		0.19
28									
29	90								

 $YBa_2Cu_3O_{7-x}$

Таблица З

e/q	a	b	С		
a	$(c_{11}/\rho)^{1/2} = 4.40 \cdot 10^3$	$[(c_{11} - c_{12})/2\rho]^{1/2}$	$(c_{44}/\rho)^{1/2} = 2.66 \cdot 10^3$		
b	$[(c_{11} - c_{12})/2\rho]^{1/2}$	$(c_{11}/\rho)^{1/2} = 4.40 \cdot 10^3$	$(c_{44}/\rho)^{1/2} = 2.66 \cdot 10^3$		
с	$(c_{44}/\rho)^{1/2} = 2.66 \cdot 10^3$	$(c_{44}/\rho)^{1/2} = 2.66 \cdot 10^3$	$(c_{33}/\rho)^{1/3} = 3.77 \cdot 10^3$		

 $YBa_2\ Cu_3\ O_{7-x}.$ Скорость звука по направлениям осей, м/сек

Здесь q – направление волнового вектора, e – направление вектора поляризации, c_{ij} – упругие модули, ρ – плотность.

Таблица 4

Упругие постоянные текстурированных керамик и их зависимость от давления В

Упругие постоянные	YBaCuO	YBaCuO	YBaCuO $(p = 0)$	EuBaCuO	GdBaCuO
Плотность, Γ/cm^3	5.199	5.985	6.338	4.793	5.549
Пористость (р), %	18	5.6	0		
$ u_l \cdot 10^3,\mathrm{m/c} $	4.067	4.537	4.780	3.520	3.995
$ u_t \cdot 10^3, \mathrm{m/c} $	2.507	2.895	3.010	2.129	2.306
$c_{11},$ ГПа	86	123	145	59.4	86.8
$c_{44},$ ГПа	32.7	50.1	57.4	21.7	29.5
<i>В</i> , ГПа	42.4	56.4	68.5	30.4	47.4
E, ΓΠα	78	116.0	135	52.6	73.3
Соотн. Пуассона	0.194	0.157	0.149	0.212	0.292
$dc_{11}/dp, p = 0$	69	145		30	21
$dc_{44}/dp, p = 0$	14	28		2.7	1.8
dB/dp, p = 0	50	108		28	18
$\Gamma_L^{ m ak}$	9.1	15.6		7.5	5.5
Γ_T^{ak}	11.7	23.7		1.0	1.3
Γ^{ak}	2.1	15.6		3.2	2.6
Γ_T	0.749	0.858			

В таблице 4 также приводятся параметры Грюнайзена, полученные как из измерений упругих постоянных под давлением ($\Gamma_L^{ak}, \Gamma_T^{ak}$), в соответствии с формулами (1)-(2), так и из тепловых измерений (Γ_T).

$$\Gamma_L^{\rm ak} = (B/6c_{11})[3 - (2c_{12}/B) - (3dB/dp) - (4dc_{44}/dp)], \tag{1}$$

$$\Gamma_T^{\rm ak} = (1/6c_{44})[2c_{44} - (3B \cdot dc_{44}/dp) - (3B/2) + (3c_{12}/2)]. \tag{2}$$

Следует отметить, что большие значения параметра Грюнайзена Γ^{ak} , полученные из акустических измерений, несопоставимы по величине с Γ_T , полученными из тепловых измерений (см. также работу [31]). Такое несоответствие трудно объяснить учетом вклада длинноволновых акустических мод в Γ_T , маловероятно и то, что смягчение оптических фононных мод при воздействии гидростатического сжатия приводит к возникновению фононных мод с отрицательным параметром Грюнайзена.

Таблица 5

Давление опресс.	Плотность	Предел прочности
p, кбар	$ ho,~{ m r/cm^3}$	$\sum_{ m max},~{ m kr}/{ m mm}^2$
_	4.1	7—11
4	4.5	11-15
28	4.8	33—38
50	5.2	50-55

Предел прочности УВаСиО-керамик

Разрушение образцов является хрупким.

Упругие свойства YBaCuO-керамик при анизотропном сжатии исследовались в работе [13]. Показано, что при одноосной деформации предел прочности не зависит от температуры и определяется давлением опрессовки керамики в процессе их синтеза, что видно из табл. 5.

Ультразвуковые измерения показали сильную корреляцию между уменьшением скорости ультразвука и увеличением пористости керамики [32].

Экспериментальные данные свидетельствуют о некоторых характерных чертах акустики ВТСП материалов: наличие акустических аномалий, происхождение которых дискутируется [3, 4, 7, 33–36], сильная зависимость упругих свойств образцов от технологии изготовления, термообработки и других внешних факторов.

Работа частично поддержана грантами РФФИ NN 14-02-92019, 15-02-03559, 14-02-31515, 14-02-00602.

ЛИТЕРАТУРА

- [1] H. Ledbetter, J. of Metals **40**, 24 (1988).
- [2] J. Dominec, Supercond. Sci. Technol. 2, 91 (1989).
- [3] S. Bhattacharya, in: Ultrasonics of High-T_c and Other Unconventional Superconductors.
 Ed. by M. Levy. Physical acoustics, v. 20 (Academic Press, London, 1992), p. 303.
- [4] K. Fossheim, T. Laegreid, E. Sandvold, et al., Solid. St. Comm. 63 (6), 531(1987).
- [5] V. Muller, D. Maurer, Ch. Roth, et al., Physica C 153 -155, 280 (1988).
- [6] A. Migliori, W. M. Visscher, S. Wong, et al., Phys. Rev. Lett. 64, 2458 (1990).
- [7] А. И. Головашкин, Препринт N 10, (М., ФИАН им. П.Н.Лебедева, 2005).
- [8] Дж. Е Блендер, С. К. Чианг, Д. С. Кренмер и др, В кн.: Высокотемпературные сверхпроводники, Под ред. Д. Нельсона и др. (М., Мир, 1988), с. 290.
- [9] V. N. Nikiforov, V.G. Sredin, Yu. V. Kochetkov, et al., Russian Phys. Journ. 43 (4), 334 (2000).
- [10] Г. П. Воробьев, А. М. Кадомцева, З. А. Казей и др. СФХТ **2**(2), 47 (1989).
- [11] A. A1-Kheffaji, Cankurataran, G.A. Saunders, et al., Phil. Mag. **59**(5), 487 (1989).
- [12] Л. А. Чернозатонский, А. И. Головашкин, О. М. Иваненко и др. ФТТ 30(3), 882 (1988).
- [13] В. И. Доценко, И. Ф. Кисляк, Е Д. Нацик, ФНТ 15 (1), 82 (1989).
- [14] J. K. Mackenzie, Proc. Phys. Soc. (London) 63B, 2 (1950).
- [15] V. Ramachandran, G. A. Ramadass, and R. Srinivasan, Physica C 153-155, 278 (1988).
- [16] R. Round and B. Bridge, J. Matter. Sci. Lett. 6, 1471 (1987).
- [17] N. M. Ledbetter, M. W. Austin, S. A. Kim, et al., J. Mater. Res. 2, 786 (1987); N. M. Ledbetter, M. W. Austin, S. A. Kim, et al., J. Mater. Res. 2, 790 (1987).
- [18] D. P. Almond, E. F. Lambson, G. A. Saunders et al, J.Phys. F. 17, L261 (1987).
- [19] J. L. Tallon, A. H. Schuitema & N. E.Tapp, Appl. Phys. Lett. 52, 507 (1988).
- [20] S. Ewert, S. Guo, P. Lemmens et al, Solid State Comm. 64, 1153 (1987).
- [21] P. Lemmens, F. Stellmach, S. Ewert et al., Physica C 153-155, 294 (1988).
- [22] А. Л. Гайдук, С. В. Жерлицын, О. Р. Приходько и др., ФНТ 14, 718 (1988).
- [23] Я. Н. Блиновсков, А. М. Бурханов, В. В. Гудков и др., ФММ 65, 397 (1988).
- [24] D. F. Lee and K. Salama, Mod. Phys. Lett. 2, 1111 (1988).
- [25] M. J. McKenna, A. Hikata, J. Takeuchl et al, Phys. Rev. Lett. **62**, 1556 (1989).

- [26] D. Tingzhang, Zh. Liangkun, G. Hulcheng et al., Chin. Phys. Lett. 5(10), 461 (1988).
- [27] B. Wolf, T. J. Kim, H. Kuhnberger et al., Physica C 153-155, 284 (1988).
- [28] K. Sun, M. Levy, and B. K. Sarma, Phys. Lett. A 131(9), 541 (1988).
- [29] M. Suzuci, Yu. Okuda, I. Iwasa et al., Physica C 153-155, 266 (1988).
- [30] Z. Zhao, S. Adenwalla, A. Moreau et al., Phys. Rev. B **39** (1), 721 (1989).
- [31] В. В. Воронов, А. И. Коробов, В. В. Мощалков, Препринт Т N 31 , (М., МГУ, Физический факультет, 1990).
- [32] P. K. Choi, K. K. Takagi, and T. Suzuki, Solid. St. Comm. 70 (12), 1175 (1989).
- [33] А. И. Головашкин, А.П.Русаков, УФН **170**(2), 192 (2000).
- [34] V. N. Nikiforov, V. V. Moshchalkov, M. G. Miheev et al., Physica C 185-189, 1161 (1991).
- [35] В. Н. Никифоров, Л. И. Леонюк, М. Г. Михеев и др., СФХТ 4 (2), 376 (1991)
- [36] В. В. Ржевский, Вестник МГУ, Серия 3, 1, 93 (2009)

Поступила в редакцию 20 октября 2014 г.