УДК 535.361

## ОПТИЧЕСКИЕ СВОЙСТВА МЕЗОПОРИСТЫХ ОДНОМЕРНЫХ ФОТОННЫХ КРИСТАЛЛОВ

В.С. Горелик, В.В. Щавлев

В статье приведены закономерности в спектрах отражения широкополосного оптического излучения от поверхности одномерных фотонных кристаллов на основе мезопористых структур. Установлена дисперсионная зависимость для электромагнитных волн в мезопористом одномерном фотонном кристалле. На её основе рассчитаны спектры отражения и пропускания в конкретных структурах и определены значения микроскопических параметров исследуемых образцов. Развитая теория использована для объяснения вида спектров отражения в мезопористых фотонных кристаллах, созданных на основе кремния, кварца и оксида алюминия.

**Ключевые слова:** фотонный кристалл, мезопористые структуры, спектр, отражение, дисперсионные кривые, групповая скорость, эффективная масса.

В настоящее время весьма актуальными являются исследования мезопористых структур, характеризующихся присутствием пор размером  $\sim 1-10$  нм [1]. Важным примером такого типа структур являются мезопористые трёхмерные, двумерные и одномерные фотонные кристаллы [2, 3]. Одномерные фотонные кристаллы представляют собой слоистые периодические структуры, для которых в определённых спектральных интервалах присутствуют так называемые запрещённые фотонные зоны. Процесс изготовления такого рода периодических структур осуществляется, в частности, методом электрохимического травления [4–6]. К настоящему времени получены мезопористые структуры и одномерные фотонные кристаллы на основе кремния, оксида кремния, оксида алюминия, фосфида галлия и других [7, 8]. Выполнены экспериментальные исследования спектров отражения некоторых типов одномерных мезопористых фотонных кристаллов [9, 10]. В связи с этим весьма актуальным является создание теории оптических свойств мезопористых фотонных кристаллов. В данной работе решается

ФИАН, 119991 Россия, Москва, Ленинский пр-т, 53; e-mail: gorelik@sci.lebedev.ru.

задача развития теоретического метода расчета дисперсионных зависимостей и спектров отражения широкополосного излучения для мезопористых одномерных фотонных кристаллов.

Для описания закона дисперсии  $\omega(k)$  электромагнитных волн в одномерных периодических структурах может быть использовано известное соотношение [11]:

$$\cos(ka) = \cos(k_1a_1)\cos(k_2a_2) - \frac{1}{2}\frac{\varepsilon_1 + \varepsilon_2}{\sqrt{\varepsilon_1\varepsilon_2}}\sin(k_1a_1)\sin(k_2a_2).$$
 (1)

Здесь  $\varepsilon_1, \varepsilon_2$  – диэлектрические проницаемости слоёв;  $a_1, a_2$  – их толщины;  $a = a_1 + a_2$  – период структуры;  $k_1 = n_1 \frac{\omega}{c}$ ;  $k_2 = n_2 \frac{\omega}{c}$ ;  $n_1 = \sqrt{\varepsilon_1}, n_2 = \sqrt{\varepsilon_2}$  – показатели преломления слоёв.

Так как  $|\cos(ka)| \leq 1$ , в спектре дисперсионных кривых  $\omega(k)$  в соответствии с (1), присутствуют запрещённые энергетические зоны ("стоп-зоны"). Мы рассматриваем направление, перпендикулярное поверхности фотонного кристалла. Параметрами, влияющими на спектральное положение и ширину стоп-зон, являются показатели преломления  $n_1$ ,  $n_2$  и толщины  $a_1$ ,  $a_2$  слоёв. Центральное положение стоп-зон в спектре определяется известным соотношением Брэгга:

$$2an_{\text{eff}} = m\lambda_B, \ m = 1, 2, 3...$$

$$n_{\rm eff} = \sqrt{n_1^2 \frac{a_1}{a} + n_2^2 \frac{a_2}{a}}.$$
(2)

Здесь  $n_{\rm eff}$  – эффективный показатель преломления структуры,  $\lambda_B$  – брэгговская длина волны.

Зная закон дисперсии  $\omega(k)$ , можно рассчитать дисперсию показателя преломления исследуемой структуры:

$$|n(\omega)| = \frac{ck(\omega)}{\omega}.$$
(3)

Соответственно для дисперсионных зависимостей коэффициентов отражения и пропускания образца имеют место соотношения:

$$R(\omega) = \left| \frac{\frac{ck(\omega)}{\omega} - 1}{\frac{ck(\omega)}{\omega} + 1} \right|^2,$$
(4)

$$T(\omega) = 1 - R(\omega).$$
(5)

10

Спектральные зависимости для групповой скорости электромагнитных волн в фотонном кристалле и эффективной массы фотонов задаются соотношениями [8]:

$$V_g(\omega) = \frac{d\omega}{dk}; \ m_{\text{eff}}(\omega) = \frac{\hbar}{\frac{d^2\omega}{dk^2}}.$$
(6)

На основе приведённых соотношений (1)–(5) можно при расчете подбирать показатели преломления и толщины слоёв в одномерных периодических структурах таким образом, чтобы расчётные спектры отражения и пропускания совпадали с экспериментальными данными.

В данной работе проведен анализ экспериментальных данных, полученных в работах [9, 10], характеризующих оптические свойства мезопористых одномерных фотонных кристаллов, созданных на основе кремния (Si), оксида кремния (SiO<sub>2</sub>) и оксида алюминия (Al<sub>2</sub>O<sub>3</sub>). В работе [9] исследовались образцы мезопористых одномерных фотонных кристаллов на основе кремния и оксида кремния. Параметры полученных образцов определялись двумя способами: прямыми измерениями с помощью сканирующего электронного микроскопа и посредством анализа спектральной интерференционной картины отраженного от слоев излучения. Согласно данным, приведённым в этой работе, период структуры и толщины слоёв исследуемых образцов соответственно равны: a = 190 нм,  $a_1 = 90$  нм,  $a_2 = 100$  нм. Вид спектров отражения широкополосного из-



Рис. 1: Спектры отражения образцов мезопористых одномерных фотонных кристаллов на основе кремния (а) и оксида кремния (б), полученные экспериментально (пунктирная линия) и расчетом (сплошная линия) при специально подобранных значениях параметров образцов.

лучения от поверхности обсуждаемых фотонных кристаллов при нормальном падении, полученный в работе [9], приведён на рис. 1 ((a), (б)) пунктирной линией.

Сплошная линия на рис. 1 ((a), (б)) соответствует спектрам отражения, рассчитанным на основании соотношений (1)–(4). При этом толщины слоёв фотонного кристалла соответствовали значениям, приведенным в работе [9]. Показатели преломления слоёв  $n_1$  и  $n_2$  подбирались таким образом, чтобы обеспечить наилучшее согласие границ стопзон экспериментальных спектров отражения (пунктирные кривые на рис. 1((a),(б)) с рассчитанными зависимостями (сплошные кривые на рис. 1((a), (б)). Подобранные значения рассчётных параметров исследуемых образцов приведены в табл. 1.

Таблица 1

Значения показателей преломления, периода структуры и толщины слоёв образцов мезопористых одномерных фотонных кристаллов (ФК) на основе кремния и оксида кремния, при которых совпадают границы стоп-зон расчетных

| Наименование   |       |       |             |            |            |       | Центр            | Ширина   |
|----------------|-------|-------|-------------|------------|------------|-------|------------------|----------|
|                | $n_1$ | $n_2$ | $n_{ m ef}$ | $a_1$ , нм | $a_2$ , нм | a, нм | стоп-зоны        | стоп-    |
|                |       |       |             |            |            |       | $\lambda_B$ , нм | зоны, нм |
| ФК на основе   | 2.15  | 1.69  | 1.93        | 90         | 100        | 190   | 733              | 105      |
| кремния        |       |       |             |            |            |       |                  |          |
| ФК на основе   | 1.52  | 1.35  | 1.44        | 90         | 100        | 190   | 547              | 40       |
| оксида кремния |       |       |             |            |            |       |                  |          |

и экспериментальных спектральных кривых отражения

Согласно данным, приведённым в работе [9], показатели преломления слоёв мезопористых одномерных фотонных кристаллов на основе кремния и оксида кремния соответственно равны:  $n_1 = 2.1$ ;  $n_2 = 1.8$  для кремния и  $n_1 = 1.48$ ;  $n_2 = 1.32$  для оксида кремния. Таким образом, подобранные значения показателей преломления слоёв близки к значениям, полученным экспериментально.

В работе [10] приведены спектральные зависимости коэффициентов отражения и пропускания мезопористых одномерных фотонных кристаллов на основе оксида алюминия [12], полученные экспериментально (пунктирные линии на рис. 2, 3 для двух образцов).

Мезопористые одномерные фотонные кристаллы на основе оксида алюминия изготавливались методом электрохимического травления с различным режимом пропускания электрического тока и временем травления образца. В результате получились од-



Рис. 2: Экспериментально полученные [10] спектры отражения (a) и пропускания (б) образца мезопористого одномерного фотонного кристалла на основе оксида алюминия с периодом травления  $T_1 = 1170$  с (пунктирная линия), и расчётные данные по формулам (4), (5) (сплошная линия).



Рис. 3: Экспериментально полученные [10] спектры отражения (a) и пропускания (б) образца мезопористого одномерного фотонного кристалла на основе оксида алюминия с периодом травления  $T_2 = 675$  с (пунктирная линия), и расчётные данные по формулам (4), (5) (сплошная линия).

номерные периодические структуры с одинаковым количеством, но с разной толщиной слоёв. Для первого образца период травления составлял  $T_1 = 1170$  с и общим временем травления  $t_1 = 44$  ч, а для второго –  $T_2 = 675$  с и  $t_2 = 28$  ч соответственно. Конкретные значения показателей преломления и толщин слоёв исследуемых образцов в работе [10] не приводятся.

На основе использования соотношений (4), (5) были подобраны параметры и рассчи-

таны спектры отражения и пропускания (сплошные линии на рис. 2, 3), а также дисперсионные кривые и спектральные зависимости эффективного показателя преломления, групповой скорости и эффективной массы фотонов для второго образца (рис. 4). Значения параметров для расчётов подбирались таким образом, чтобы наблюдалось наилучшее соответствие рассчитанных и экспериментально полученных спектральных кривых отражения и пропускания. Подобранные значения параметров приведены в табл. 2.

Таблица 2

| Значения параметров образцов № 1 и № 2 мезопористых одномерных фотонных       |
|-------------------------------------------------------------------------------|
| кристаллов $(\Phi K)$ на основе оксида алюминия, использовавшиеся для расчёта |
| спектральной зависимости коэффициентов отражения и пропускания                |

| Наименование |       |       |              |            |            |       | Центр            | Ширина   |
|--------------|-------|-------|--------------|------------|------------|-------|------------------|----------|
| спектра и    | $n_1$ | $n_2$ | $n_{\rm ef}$ | $a_1$ , нм | $a_2$ , нм | a, нм | стоп-зоны        | стоп-    |
| кристалла    |       |       |              |            |            |       | $\lambda_B$ , нм | зоны, нм |
| Спектр       |       |       |              |            |            |       |                  |          |
| отражения;   | 1.31  | 1.75  | 1.55         | 109        | 109        | 218   | 676              | 120      |
| ΦK № 1       |       |       |              |            |            |       |                  |          |
| Спектр       |       |       |              |            |            |       |                  |          |
| пропускания; | 1.31  | 1.76  | 1.55         | 109        | 109        | 218   | 676              | 120      |
| ΦK № 1       |       |       |              |            |            |       |                  |          |
| Спектр       |       |       |              |            |            |       |                  |          |
| отражения;   | 1.42  | 1.60  | 1.51         | 71         | 71         | 142   | 429              | 30       |
| ΦK № 2       |       |       |              |            |            |       |                  |          |
| Спектр       |       |       |              |            |            |       |                  |          |
| пропускания; | 1.28  | 1.70  | 1.51         | 71         | 71         | 142   | 429              | 35       |
| ΦK № 2       |       |       |              |            |            |       |                  |          |

Как видно из рис. 2(a), для первого образца в спектре отражения присутствуют сразу два пика, соответствующие положениям первой и второй стоп-зон. В спектре отражения, рассчитанном на основе предложенной теоретической модели, также присутствуют эти пики; положение каждого из них совпадает с положением пиков, полученных экспериментально.

Оксид алюминия (Al<sub>2</sub>O<sub>3</sub>) характеризуется нормальной дисперсией в видимой области спектра. Зависимость показателя преломления оксида алюминия от длины волны представлена в табл. 3.

## Таблица З

| $\lambda$ , нм | $n(\lambda)$ | $\lambda$ , HM | $n(\lambda)$ | $\lambda$ , HM | $n(\lambda)$ | $\lambda$ , HM | $n(\lambda)$ |
|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|
| 193            | 1.93         | 266            | 1.83         | 442            | 1.78         | 670            | 1.76         |
| 213            | 1.89         | 280            | 1.82         | 458            | 1.78         | 694            | 1.76         |
| 222            | 1.88         | 308            | 1.81         | 488            | 1.78         | 755            | 1.76         |
| 226            | 1.87         | 325            | 1.80         | 515            | 1.77         | 780            | 1.76         |
| 244            | 1.85         | 337            | 1.80         | 532            | 1.77         | 800            | 1.76         |
| 248            | 1.85         | 351            | 1.80         | 590            | 1.77         | 820            | 1.76         |
| 257            | 1.84         | 355            | 1.80         | 633            | 1.77         | 980            | 1.76         |

Зависимость показателя преломления оксида алюминия  $(Al_2O_3)$  от длины волны

Из табл. 3 видно, что в исследуемом диапазоне частот показатель преломления Al<sub>2</sub>O<sub>3</sub> варьируется от 1.76 до 1.93; подобранные в табл. 2 значения показателей преломления слоёв укладываются в этот диапазон.

Полученные результаты позволяют сделать вывод о правомерности использования описанной теории для расчёта дисперсионных кривых, а также спектров отражения и пропускания мезопористых одномерных фотонных кристаллов.

На рис. 4. приведены рассчитанные по соотношениям (1)–(6) дисперсионные кривые и спектральные зависимости показателя преломления, групповой скорости и эффективной массы фотонов для образца № 2 мезопористого одномерного фотонного кристалла на основе оксида алюминия (табл. 2).

На рис. 4(а) представлены: дисперсионные ветви (кривые 1–3) мезопористого одномерного фотонного кристалла на основе оксида алюминия с периодом травления  $T_2 = 675$  с. Кроме того, на этом же рисунке пунктиром показана дисперсионная зависимость  $\omega(k)$  для электромагнитного излучения в вакууме (кривая 4). Спектральные положения первой и второй стоп-зоны фотонного кристалла показаны горизонтальными прямыми в интервалах  $\Delta \lambda_1 = 414 - 445$  нм и  $\Delta \lambda_2 = 214 - 215$  нм соответственно. Точка  $A(\lambda_A = 356$  нм) соответствует пересечению дисперсионных кривых 2 и 4; при этом показатель преломления  $n(\omega_A) = -1$  (см. рис. 4((а), (б))). Согласно соотношениям (3)–(4), для точки A коэффициент отражения  $R(\omega_A) = 0$  (см. работы [13–15]).

Анализ графика зависимости групповой скорости от длины волны (рис. 4(в)) показывает, что на границах фотонных стоп-зон групповая скорость фотонов близка к нулю. В этом случае резко возрастает эффективность комбинационных оптических процессов в связи с аномальным увеличением плотности фотонных состояний в области края



Рис. 4: Дисперсионные кривые  $\omega(k)$  (a), спектральные зависимости показателя преломления  $n(\omega)$  (б), групповой скорости  $V_g(\omega) = \frac{d\omega}{dk}$  (в) и эффективной массы фотонов  $m_{\rm ef}(\omega) = \frac{\hbar}{\frac{d^2\omega}{dk^2}}$  (г) образца  $N^{\circ}$  2 мезопористого фотонного кристалла на основе оксида алюминия.

стоп-зоны [16]. Из зависимости эффективной массы фотонов от длины волны падающего излучения (рис. 4(г)) следует, что масса покоя фотонов может принимать как положительные, так и отрицательные значения. Наибольшие по модулю значения эффективной массы фотонов соответствуют точкам перегиба дисперсионных кривых. При этом эффективная масса фотонов на несколько порядков превышает массу фотонов в других областях спектра.

Таким образом, в данной работе предложен метод определения микроскопических характеристик мезопористых одномерных фотонных кристаллов на основе сравнения экспериментально полученных спектров отражения и пропускания широкополосного излучения с результатами расчётов на основе приведенной теоретической модели. Установлены значения показателей преломления слоёв, их толщин, периода фотонного кристалла; построены дисперсионные зависимости показателя преломления, групповой скорости электромагнитных волн и эффективной массы фотонов в различных областях спектра. Установлено, что групповая скорость электромагнитных волн принимает аномально низкие значения вблизи краёв стоп-зон, что приводит к резкому возрастанию плотности фотонных состояний и к повышению эффективности соответствующих оптических процессов.

## ЛИТЕРАТУРА

- H. Foll, M. Christophersen, J. Carstensen, and G. Hasse, Mater. Sci. Eng. R. 39, 93 (2002).
- [2] J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, Nature (London) 386, 143 (1997).
- [3] P. K. Kashkarov, L. A. Golovan, A. B. Fedotov, et al., J. Opt. Soc. Am. B 19, 2273 (2002).
- [4] L. Pavesi, Rivista del nuovo cimento **20**, № 10 (1997).
- [5] V. Lehmann, U. Gosele, Appl. Phys. Lett. 58, 856 (1991).
- [6] P. Kumar and P. Huber, Journal of Nanomaterials 2007, 89718 (2007).
- [7] J. E. Lugo, Journal of Applied Physics 91, Nº 8 (2002).
- [8] Л. А. Головань, В. Ю. Тимошенко, П. К. Кашкаров, УФН 177, 619 (2007).
- [9] S. E. Svyakhovskiy, A. I. Maydykovsky, and T. V. Murzina, J. Appl. Phys. 112, 013106 (2012).
- [10] Yi. Liu, Yi Chang, Zh. Ling, et al., Electrochemistry Communications 13, 1336 (2011).
- [11] В. С. Горелик, Квантовая электроника **37**, 409 (2007).
- [12] B. Wang, G. T. Fei, M. Wang, et al., Nanotechnology 18, 365601 (2007).
- [13] В. Г. Веселаго, УФН **92**, 517 (1967).
- [14] В. М. Агранович, Ю. Н. Гартштейн, УФН 176, 1051 (2006).
- [15] В. С. Горелик, В. В. Щавлев, Вестник Московского государственного технического университета им. Н.Э. Баумана, серия: естественные науки, № 1, 47 (2011).
- [16] В. С. Горелик, А. А. Исаков, А. Б. Фадюшин, Краткие сообщения по физике ФИАН, № 10, 12 (2006).

Поступила в редакцию 2 июня 2015 г.