УДК 681.7.069.3

СОЗДАНИЕ И ИССЛЕДОВАНИЕ ПАРАМЕТРОВ МАКЕТА ПРИБОРА НА ОСНОВЕ СТРУКТУРЫ ПОЛУПРОВОДНИК–УГЛЕРОДНЫЕ НАНОТРУБКИ ДЛЯ ДЕТЕКТИРОВАНИЯ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ

А. А. Полохин¹, А. Ю. Герасименко¹, А. А. Дудин², Л. П. Ичкитидзе¹, Е. П. Кицюк^{2,3}, А. П. Орлов², А. А. Павлов², Ю. П. Шаман³

> Разработан макет фотоприемного прибора на основе структуры полупроводник-углеродные нанотрубки (УНТ), состоящий из 16 чувствительных элементов, имеющих ячеистую структуру и выполненных на единой подложке. Топология чувствительных ячеек представляет собой отверстия, проходящие через слои металлизации и диэлектрика к полупроводнику, от которого массив УНТ прорастает к верхнему слою металлизации. Исследованы параметры макета прибора: рабочий диапазон длин волн находится в пределах 400– 1100 нм, быстродействие составляет 30 мкс, коэффициенты пиковой чувствительности, которая достигалась при длинах волн 640 и 950 нм, составили 197 мкА/Вт и 193 мкА/Вт, соответственно.

Ключевые слова: приёмник оптического излучения, углеродные нанотрубки, полупроводник, оптоэлектроника.

Введение. В наше время разработка приемников оптического излучения является актуальной задачей в различных отраслях науки, производства и спецтехники. Все существующие на данный момент фотоприемники по принципу работы можно разделить на два основных типа: фототермические и фотоэлектрические [1]. В фототермических

¹ НИУ "МИЭТ", 124498 Россия, Зеленоград, пл. Шокина, 1; e-mail: a.a.polohin@gmail.com.

 $^{^2}$ ИНМЭ РАН, 115487 Россия, Москва, ул. Нагатинская, 16
а, корп. 11.

 $^{^3}$ НПК "Технологический центр", 124498 Россия, Зеленоград, 4806-й пр-д, 5.

реализуется механизм преобразования оптической энергии в тепловую энергию, а затем в электрическую. Подобным фотоприемникам свойственны такие недостатки, как высокая инерционность (как следствие, низкое быстродействие) и подверженность воздействию внешней среды. В основе принципа работы фотоэлектрических приемников лежит непосредственное преобразование оптической энергии в электрическую. К такому типу можно отнести полупроводниковые фотоприемники, которые обладают высоким быстродействием и менее подвержены воздействию внешних условий, чем фототермические приемники.

Современные исследования показали перспективность использования в качестве компонентов чувствительных элементов в фотоприемниках углеродных нанотрубок (УНТ) полупроводникового типа, которые являются прямозонными полупроводниками. Несмотря на свои значительные преимущества, фотоприемники на основе УНТ еще не получили массового внедрения из-за следующих особенностей:

1. Ширина запрещенной зоны для полупроводниковых нанотрубок различных диаметров колеблется от 0.1 до 2 эВ (λ от ~1 мкм до ~10 мкм) [2].

2. Незначительные изменения параметров (размеров, состава, структуры и др.) нанотрубок влекут за собой сильные изменения их свойств. Следовательно, для сохранения воспроизводимости характеристик фотоприемников на основе УНТ требуется высокая степень эквивалентности синтезируемых нанотрубок [3].

3. Необходим учет размерных эффектов (например, зон обеднения и пространственного заряда) в зоне контактов УНТ с полупроводниковой (металлической) матрицей (функциональный гетеропереход), так как эти эффекты играют значительную роль в возможности увеличения рабочей температуры детектора [4].

4. Малый размер единичной нанотрубки приводит к низкой интенсивности сигнала при взаимодействии с оптическим излучением [5], а для усиления сигнала необходимо множество трубок, например, в виде выращенного массива.

Материалы и методы. Разработанный макет прибора представлял собой матричный детектор, состоящий из 16 чувствительных элементов, выполненных на единой полупроводниковой подложке (рис. 1). Каждый чувствительный элемент содержит 10000 чувствительных ячеек, расположенных в виде квадрата 100×100, с расстоянием между ячейками 5 мкм. Основной топологией чувствительных ячеек являлась двухэлектродная система, представляющая собой отверстия, проходящие через слои металлизации и диэлектрика к полупроводнику, от которого массив УНТ прорастал к верхнему слою металлизации (рис. 1).

Рис. 1: Топологии матричного детектора на основе массива УНТ (слева) и чувствительной ячейки (справа). 1 – чувствительный элемент, 2 – контактная площадка чувствительного элемента, 3 – контактная металлизация, 4 – контактное окно кремниевой подложки, 5 – углеродные нанотрубки, 6 – верхний слой металлизации, 7 – оксид кремния (изолирующий слой), 8 – кремниевая подложка.

Рис. 2: Экспериментальная установка для исследования параметров макета прибора на основе структуры полупроводник-УНТ. 1 – источник излучения, 2 – входной конденсор, 3 – блок светофильтров, 4 – монохроматор, 5 – выходной конденсор, 6 – устройство сбора данных, 7 – аттенюатор, 8 – быстродействующий светодиод, 9 – держатель образца, 10 – эталонный измеритель мощности оптического излучения.

Описание эксперимента. Параметры матричного детектора на основе УНТ, такие как рабочий диапазон длин волн, быстродействие и коэффициенты пиковой чувствительности, исследовались с помощью экспериментальной установки (рис. 2). Основными элементами экспериментальной установки являлись монохроматор МДР-41 (ОКБ Спектр, Россия) и устройство сбора данных NI USB-6218 (National Instruments, США). Процесс исследований был автоматизирован с помощью специально разработанного программного обеспечения в среде LabVIEW.

Для определения рабочего диапазона длин волн на исследуемый макет прибора с помощью монохроматора последовательно производилось воздействие излучением различных длин волн, при этом синхронно регистрировалась величина генерируемого тока каждого чувствительного элемента. Определение быстродействия производилось с помощью воздействия на макет прибора импульсным излучением от быстродействующего светодиода и регистрации зависимости амплитуды генерируемого тока от времени. При этом также регистрировалась зависимость тока светодиода от времени. Для исследования чувствительности с помощью монохроматора и аттенюатора с калиброванными нейтральными светофильтрами были получены зависимости амплитуды генерируемого тока от интенсивности падающего излучения для длин волн 640 и 950 нм.

Рис. 3: Зависимости силы тока макета прибора на основе структуры полупроводник-УНТ от длины волны падающего излучения (слева) и от времени (справа). Серая линия – макет, чёрная – ток импульсного светодиода.

Результаты эксперимента. Зависимость силы тока от длины волны падающего излучения (рис. 3) позволила определить спектральный диапазон работы исследуемого макета прибора, который составил 400–1100 нм. Кривая данной зависимости также обладает несколькими характерными точками: 640, 800, 950 нм, наличие которых отличает исследуемый прибор от существующих кремниевых фотоприемников.

Полученные зависимости амплитуды генерируемого тока от интенсивности падающего излучения линейно возрастали, что указывает на линейность процесса формирования фототока в детекторе при взаимодействии с излучением. Данные кривые были линейно аппроксимированы с использованием метода наименьших квадратов, а коэффициент чувствительности определялся как коэффициент наклона линеаризированной кривой. Коэффициенты пиковой чувствительности на длинах волн 640 и 950 нм составили 197 мкA/Вт и 193 мкA/Вт, соответственно. По зависимости изменения амплитуды генерируемого тока от времени (рис. 3) было установлено быстродействие исследуемого прибора ~30 мкс, как сумма времени срабатывания (которое в данном случае было пренебрежимо мало) и времени нарастания до 90% максимальной амплитуды силы тока.

Заключение. В работе представлены результаты разработки макета прибора на основе структуры полупроводник–углеродные нанотрубки. Исследованы параметры макета прибора: рабочий диапазон длин волн находился в пределах 400–1100 нм, быстродействие составило 30 мкс, коэффициенты пиковой чувствительности составили 197 мкА/Вт (640 нм) и 193 мкА/Вт (950 нм). Данный прибор является результатом, лежащим в области новой кремний–углеродной наноэлектроники, и по мере совершенствования и отработки технологии должен обеспечить более высокие параметры, чем у ныне существующих полупроводниковых детекторов.

Работа выполнена при финансовой поддержке Минобрнауки России (проект № 16.9007.2017/БЧ).

ЛИТЕРАТУРА

- [1] J. D. Vincent, J. Vampola, and J. Pierce, Fundamentals of Infrared and Visible Detector Operation and Testing (Hoboken, Wiley, 2015).
- [2] A. Rakitin and C. Papadopoulos, J. M. Xu, Phys. Rev. B **61**(8), 5793 (2000).
- [3] P. Avouris, M. Freitag, and V. Perebeinos, Nat. Photonics 2(6), 341 (2008).
- [4] A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, Science **294**(5545), 1317 (2001).
- [5] M. Freitag, Y. Martin, J. A. Misewich, R. Martel, and P. Avouris, Nano Lett. 3(8), 1067 (2003).

По материалам VI Международной молодежной научной школы-конференции "Современные проблемы физики и технологий".

Поступила в редакцию 20 июля 2017 г.