УДК 538.945

МОДЕЛИРОВАНИЕ ОТКЛИКА СВЕРХПРОВОДЯЩЕЙ ПЛЕНКИ НА ПЕРЕМЕННОЕ МАГНИТНОЕ ПОЛЕ И ОЦЕНКА ВОЗМОЖНОСТИ ОПРЕДЕЛЕНИЯ ЛОНДОНОВСКОЙ ГЛУБИНЫ ПРОНИКНОВЕНИЯ

П. И. Безотосный, С. Ю. Гаврилкин, О. М. Иваненко, К. В. Мицен, А. Ю. Цветков

В работе рассматривается наглядная "электротехническая" модель для вычисления распределения индукционных токов в сверхпроводящей пленке, вблизи которой расположена измерительная катушка, создающая локальное переменное низкочастотное магнитное поле. В рамках модели рассчитано изменение индуктивности катушки под влиянием сверхпроводника с заданной лондоновской глубиной проникновения магнитного поля. Показана возможность определения глубины проникновения по экспериментальным данным; рассмотрена чувствительность предлагаемого подхода для пленок различной толщины, а также для различной геометрии задачи.

Ключевые слова: лондоновская глубина проникновения магнитного поля, сверхпроводящие плёнки, индукционная методика.

Введение. Индукционные методики, основанные на анализе отклика образца на переменное магнитное поле, являются мощным инструментом для бесконтактного исследования параметров сверхпроводников. В зависимости от условий эксперимента они могут быть использованы как для определения плотности критического тока и вольт-амперной характеристики (нелинейные методики), так и для изучения магнитных свойств материала, таких как магнитная восприимчивость и глубина проникновения магнитного поля λ (линейные методики). Последний параметр, а особенно его температурная зависимость $\lambda(T)$, интересен также для получения информации о микроскопических свойствах сверхпроводящего конденсата.

ФИАН, 119991 Россия, Москва, Ленинский пр-т, 53; e-mail: bezpi@sci.lebedev.ru.

С точки зрения простоты технической реализации наиболее привлекательно выглядит низкочастотная линейная индукционная методика, в которой анализируется влияние сверхпроводящего образца (тонкой пленки или пластины) на индуктивность измерительной катушки, расположенной в непосредственной близости от поверхности пленки, при этом ось катушки перпендикулярна плоскости образца. Изменение индуктивности измерительной катушки ΔL определяется распределением индуцированных в пленке сверхпроводящих токов, которое, в свою очередь, связано с глубиной проникновения магнитного поля λ образца. В данной работе для моделирования данного распределения и установления связи между изменением индуктивности ΔL и глубиной проникновения λ предложена наглядная "электротехническая" модель, за основу которой взят подход, описанный в работах [1, 2], где проводилось моделирование отклика сверхпроводящей пленки в нелинейном режиме и его сравнение с экспериментальными результатами.

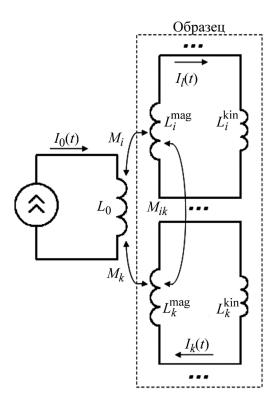


Рис. 1: Эквивалентная схема эксперимента.

Описание модели. Рассмотрим систему, состоящую из образца в виде тонкого сверхпроводящего диска и соосно-расположенной над его поверхностью измерительной катушки, при этом предполагается, что радиальный размер диска гораздо больше радиуса катушки. При пропускании через катушку синусоидального переменного тока $I_0(t)$ в образце индуцируются круговые токи. Для описания неоднородного распределения токов в образце мысленно разобьём его на $N=N_r\cdot N_z$ изолированных коаксиальных круговых контуров (с радиусами r_i и шириной dr) с центрами, находящимися на оси катушки возбуждения (при этом N_r — число контуров в радиальном направлении, а N_z — по толщине пленки). Для достаточно тонких пленок, толщина которых не превышает долей λ , можно принять $N_z=1$ ("одномерная" модель, 1D). В общем случае применяется "двумерная" (2D) модель с $N_z>1$, позволяющая получать распределение плотности тока по глубине. Считаем, что эти контуры индуктивно связаны как с измерительной катушкой, так и между собой. Эквивалентная схема эксперимента приведена на рис. 1.

Введем следующие обозначения: L_0 – индуктивность измерительной катушки, L_k – полная индуктивность k-го контура (сумма магнитной L_k^{mag} и кинетической индуктивностей L_k^{kin}), M_k – взаимная индуктивность k-го контура и измерительной катушки, M_{ik} – взаимная индуктивность i-го и k-го контуров (при i=k совпадает с магнитной частью индуктивности L_k^{mag}), $I_k(t)$ – индуцированный ток k-ого контура.

Полные потоки через измерительную катушку Φ_0 и модельные контуры Φ_k могут быть записаны в виде:

$$\Phi_0(t) = L_0 I_0(t) + \sum_{i=1}^N M_i I_i(t),$$

• • •

$$\Phi_k(t) = M_k I_0(t) + \sum_{i=1}^N M_{ik} I_i(t).$$

При этом выражение для напряжения на выводах измерительной катушки имеет вид:

$$E(t) = -\frac{d\Phi_0(t)}{dt} = -L_0 \frac{dI_0(t)}{dt} - \sum_{i=1}^{N} M_i \frac{dI_i(t)}{dt},$$

где второе слагаемое представляет собой отклик образца $\Delta E(t)$.

В данной работе рассмотрим линейный случай, когда амплитуды плотностей индуцированных токов заведомо меньше критической, образец находится в сверхпроводящем состоянии, и сопротивление всех контуров имеет чисто реактивный характер. При этом закон Ома для k-го контура имеет вид:

$$-\frac{d\Phi_k(t)}{dt} = L_k^{\text{kin}} \frac{dI_k(t)}{dt},$$

а ток может быть найден из выражения

$$-L_k^{\text{kin}}\frac{dI_k(t)}{dt} = M_k \frac{dI_0(t)}{dt} + \sum_{i=1}^N M_{ik} \frac{dI_i(t)}{dt}.$$

Внося левую часть данного уравнения под знак суммы, можно получить выражение для производных токов модельных контуров в матричном виде:

$$\left[\frac{dI_k(t)}{dt}\right] = -\mathbf{W} \cdot \left[M_k \frac{dI_0(t)}{dt}\right],$$

где выражения в квадратных скобках обозначают вектор-столбцы, составленные из соответствующих элементов, а $\mathbf{W} = [M_{ik} + \delta_{ik}L_i^{\mathrm{kin}}]^{-1}$ — матрица, обратная матрице вза-имных индуктивностей контуров (δ_{ik} — символ Кронекера). Таким образом, выражение для производной тока k-го контура имеет вид:

$$\frac{dI_k(t)}{dt} = -\frac{dI_0(t)}{dt} \sum_{i=1}^{N} W_{ik} M_i.$$

Следовательно, напряжение отклика образца выражается формулой

$$\Delta E(t) = \frac{dI_0(t)}{dt} \sum_{k=1}^{N} M_k \sum_{i=1}^{N} W_{ik} M_i,$$

где величина

$$\Delta L = -\sum_{k=1}^{N} M_k \sum_{i=1}^{N} W_{ik} M_i$$

представляет собой изменение индуктивности измерительной катушки под влиянием образца.

В предположении однородности распределения магнитного поля по сечению модельного контура (что справедливо при $dz << \lambda$) возможно использование следующей простой формулы для связи кинетической индуктивности с глубиной проникновения $\lambda[3]$:

$$L_k^{\rm kin} = \frac{2\pi\mu_0\lambda^2 r_k}{drdz}.$$

Таким образом, изменение индуктивности измерительной катушки может быть рассчитано как функция глубины проникновения λ . С другой стороны, ΔL может быть определена из эксперимента, что даёт возможность оценки величины λ .

Результаты численных расчетов. Была проведена серия расчетов для оценки чувствительности метода $\gamma = \frac{d\Delta L}{d\lambda}$ в зависимости от толщины образца d, глубины проникновения магнитного поля λ , величины зазора между катушкой и пленкой h и различных

геометрических параметров измерительной катушки (внутренний радиус R_1 , внешний радиус R_2 , высота катушки H, число витков N). В табл. 1 указаны значения индуктивности катушки в отсутствие образца L_0 и приведены оценки чувствительности γ для пленок толщиной 50 нм с $\lambda = 48$ нм (что соответствует Nb при 4.2 K [3]) и $\lambda = 630$ нм (соответствует YBaCuO при 77 K [4]) для различных измерительных катушек, при этом h = 0.1 мм.

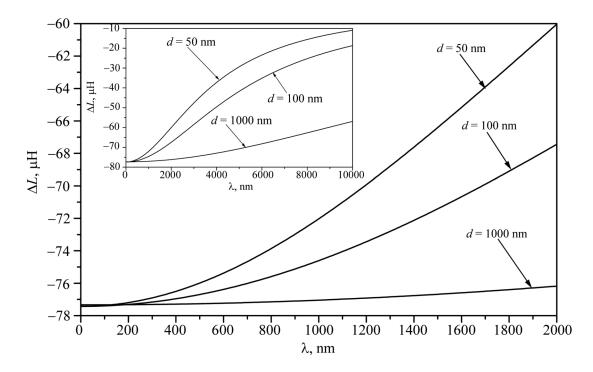


Рис. 2: Зависимости изменения индуктивности катушки № 2 (см. табл. 1) ΔL от глубины проникновения магнитного поля λ для пленок различной толщины d (50, 100 u 1000 n).

На рис. 2 представлены зависимости изменения индуктивности ΔL катушки № 2 от глубины проникновения магнитного поля λ для пленок различной толщины (50, 100 и 1000 нм) при одинаковом зазоре h=0.1 мм. Видно, что чувствительность возрастает с уменьшением толщины образца. В частности, для образца толщиной 50 нм с $\lambda=48$ нм она составляет около 0.6 н Γ н/нм, а для образца той же толщины и $\lambda=630$ нм – около 7 н Γ н/нм.

На рис. 3 представлены графики относительной чувствительности $\frac{\gamma}{L_0}$. Видно, что для большинства рассмотренных катушек изменение относительной чувствительности незначительно, поэтому выбор оптимальной геометрии должен быть сделан, исходя из

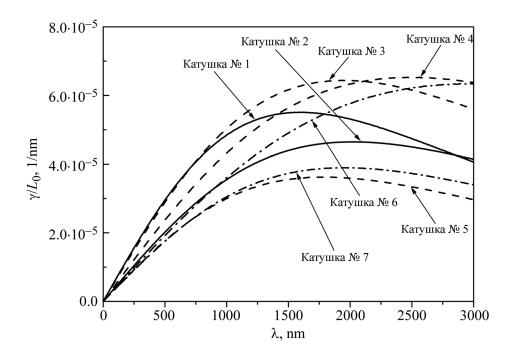


Рис. 3: Зависимости относительной чувствительности $\frac{\gamma}{L_0}$ от глубины проникновения магнитного поля λ для катушек, представленных в табл. 1. На рисунке указаны номера катушек.

абсолютного значения измеряемой индуктивности L_0 , величины ее изменения ΔL и разрешающей способности измерительной аппаратуры.

Таблица 1 Геометрические параметры, величина собственной индуктивности и оценка чувствительности метода для различных измерительных катушек

N	R_1 , mm	R_2 , mm	H, mm	N	L_0 , мк Γ н	γ , н Γ н/нм	
						$\lambda = 48 \; \text{hm}$	$\lambda = 630 \; \text{hm}$
1	1	1.7	0.7	600	966	2.2	28
2	0.3	1	0.7	600	279	0.57	6.9
3	0.3	1	0.4	340	108	0.31	3.9
4	0.3	0.6	0.3	110	9.25	0.029	0.32
5	0.3	0.7	0.7	340	68.2	0.12	1.5
6	0.8	2.5	0.7	1540	6300	12	150
7	0.15	0.9	0.8	600	173	0.32	3.7

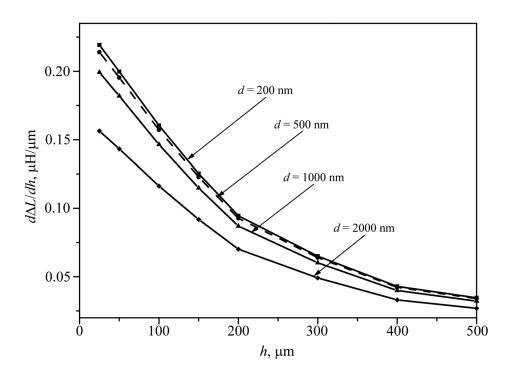


Рис. 4: Зависимости производной изменения индуктивности катушки № 7 (см. табл. 1) от величины зазора h для различных значений λ .

Оценим влияние изменения величины зазора между катушкой и пленкой h на чувствительность метода. На рис. 4 приведены зависимости производной изменения индуктивности $\frac{d\Delta L}{dh}$ катушки №7 от величины зазора h для различных значений λ . Можно видеть, что для h=0.05 мм изменение величины зазора на $\Delta h\approx 1$ нм приводит к изменению ΔL на величину порядка 0.2 нГн. Следовательно, если требуемая точность измерения глубины проникновения магнитного поля λ составляет ~ 10 нм, то точность измерения ΔL должна быть ~ 40 нГн. Тогда погрешность установки зазора катушка—образец Δh не должна превышать значение ~ 0.2 мкм, что налагает высокие требования к качеству подготовки поверхности измеряемого образца и контролю величины зазора h в процессе измерения. Отметим, что учет погрешности установки зазора особенно важен при измерениях температурной зависимости $\lambda(T)$ в широком интервале температур.

Заключение. Основные результаты данной работы можно сформулировать следующим образом:

рассмотрена наглядная "электротехническая" модель для вычисления распределения индукционных токов в сверхпроводящей пленке, вблизи которой расположена

измерительная катушка, и предложен метод оценки величины лондоновской глубины проникновения магнитного поля λ ;

 проведена оценка чувствительности предложенного метода и сформулированы некоторые требования к геометрии эксперимента.

Работа выполнена при поддержке РФФИ (проект № 16–32–00586).

ЛИТЕРАТУРА

- [1] С. Ю. Гаврилкин, О. М. Иваненко, К. В. Мицен, А. Ю. Цветков, Краткие сообщения по физике ФИАН **41**(2), 26 (2014).
- [2] С. Ю. Гаврилкин, О. М. Иваненко, К. В. Мицен, А. Ю. Цветков, Сборник трудов 2-й Национальной конференции по прикладной сверхпроводимости НКПС-2013, Москва. (НИЦ "Курчатовский институт", Москва, 2014, электронное издание), стр. 123.
- [3] В. В. Шмидт, Введение в физику сверхпроводников (М., МЦНМО, 2000).
- [4] D. Feinberg and C. Villard, Phys. Rev. Lett. **65**, 919 (1990).

Поступила в редакцию 27 октябоя 2016 г.