УДК 51-72

ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ МАЛОУГЛОВОГО РАССЕЯНИЯ НЕЙТРОНОВ НА СПЛАВЕ NiCrAl в рамках квантовой механики И в классической модели полидисперсных Шаров

С.И. Поташев, В.П. Заварзина, А.А. Афонин

Модифицированный потенциал Юкавы используется для того, чтобы подогнать параметры модели ядра под данные малоуглового рассеяния нейтронов на сплаве никельхром-алюминий для величины произведения переданного импульса Q и эффективного радиуса ядра R, удовлетворяющих условию $QR \leq \hbar$. Аналитическая модель полидисперсных шаров применяется для расчета интенсивности рассеяния нейтронов и определения наиболее вероятного макроскопического радиуса шара R_0 при $QR_0 \geq 3\hbar$.

Ключевые слова: рассеяние нейтронов, борновское приближение, классическое рассеяние на шарах.

1. Введение. Для определения структурных параметров материала исследуется малоугловое рассеяние нейтронов с длиной волны $\lambda = 4.5$ Å, которая соответствует скорости нейтронов 890 м/с. Угловое распределение интенсивности рассеянных нейтронов регистрируется двумерным позиционно-чувствительным детектором. В результате измеряется зависимость интенсивности рассеянных нейтронов от величины переданного импульса $Q = mv \sin \theta$, где m – масса нейтрона v – его скорость, θ – угол рассеяния.

При малых значениях величин, удовлетворяющих условию $QR \leq \hbar$, корректно описать экспериментальные данные с помощью классических представлений (приближения Гинье) не представляется возможным (см. [1]). Поэтому в настоящей работе для вычисления сечения рассеяния тепловых нейтронов на ядрах мы используем борновское приближение и модель ядра с модифицированным потенциалом Юкавы.

ИЯИ РАН, 117312 Россия, Москва, пр-т 60-летия Октября, д. 7a; e-mail: potashev@inr.ru.

При больших значениях величины Q, удовлетворяющих условию $QR_0 \ge 3\hbar$, структура материала может быть описана в рамках модели, в которой предполагается, что образец состоит из нескольких фракций частиц (кристаллитов) сферической формы с наиболее вероятным радиусом R_0 . Также предполагается, что материал образца содержит несколько фракций сферических кристаллитов с различными распределениями по радиусу. Далее, аналитически вычисляется интенсивность I в зависимости от переданного импульса Q с несколькими свободными параметрами, которые оптимизируются для наилучшего описания экспериментальных данных.

2. Квантово-механическое описание рассеяния нейтронов на ядрах. Амплитуда рассеяния f(Q) в борновском приближении

$$f(Q) = -\frac{m}{2\pi\hbar^2} \int V(r) \exp\left(-i\frac{\vec{Q}\vec{r}}{\hbar}\right) d^3x = \frac{2m}{\hbar^2} \frac{\hbar}{Q} \int_0^\infty V(r) \sin\left(\frac{Qr}{\hbar}\right) \cdot r dr, \qquad (1)$$

где Q – переданный импульс. Введя переменную переданного импульса $s = \frac{Q}{\hbar}$, выраженную в единицах обратной длины, мы получим

$$f(s) = -\frac{m}{2\pi\hbar^2} \int V(r) \exp\left(-i\vec{s}\vec{r}\right) d^3x = \frac{2m}{\hbar^2 s} \int_0^\infty V(r) \sin\left(sr\right) \cdot r dr.$$
 (2)

Потенциал каждого из ядер исследуемого материала образца записываем в форме потенциала Юкавы

$$V_k(r) = \frac{g}{r} \exp\left(-r/R_k\right),\tag{3}$$

где индекс k = 0, 1, 2 соответствует ядрам Ni, Cr, Al. Здесь g – эффективный ядерный заряд, $R_k = \xi A_k^{1/3} 10^{-13}$ м – эффективный радиус ядра, где A_k – атомный вес соответствующего ядра, ξ – поправочный множитель радиусов ядер. Величины g и ξ определяются как свободные параметры, наиболее соответствующие экспериментальным данным. Дифференциальное сечение для каждого из ядер

$$\frac{d\sigma_k}{d\Omega} = |f_k(s)|^2 = \frac{4g^2\xi^4 m^2}{\hbar^4} \frac{P_k R_k^4}{\left(1 + \xi^2 R_k^2 s^2\right)^2}.$$
(4)

Угловое распределение интенсивности рассеяния, которое мы измеряем в эксперименте

$$\frac{dI}{d\Omega} = I_0 L \left(n_0 \frac{d\sigma_0}{d\Omega} + n_1 \frac{d\sigma_1}{d\Omega} + n_2 \frac{d\sigma_2}{d\Omega} \right) = I_0 L \left(n_0 |f_0(s)|^2 + n_1 |f_1(s)|^2 + n_2 |f_2(s)|^2 \right) =$$

$$=\frac{4I_0L\rho N_A m^2}{\hbar^4} \cdot g^2 \xi^4 \sum_{k=0}^2 \frac{P_k}{A_k} \frac{R_k^4}{(1+\xi^2 R_k^2 s^2)^2}.$$
 (5)

39

Здесь m – масса нейтрона, L – толщина образца, I_0 – интенсивность падающих нейтронов, s – приведенный переданный импульс, m – масса нейтрона, $N_A = 6.02 \cdot 10^{23}$ моль⁻¹ – число Авогадро, ρ – плотность материала образца, $n_k = \rho N_A \frac{P_k}{A_k}$ – концентрация ядер элемента сорта k, P_k – массовая доля элемента сорта k. В сплаве NiCrAl массовые доли равны: $P_0 = 0.58$, $P_1 = 0.39$ и $P_2 = 0.03$ и атомные веса ядер составляют $A_0 =$ 0.0587 кг/моль, $A_1 = 0.052$ кг/моль и $A_2 = 0.027$ кг/моль. На рис. 1 приведено описание экспериментальных данных для сплава NiCrAl: сплошная кривая – расчет по формуле (5), штриховая кривая – расчет в приближении Гинье. Наиболее вероятные значения параметров $g = 2.473 \pm 0.05$, $\xi = 28.3 \pm 0.5$. Наиболее вероятный радиус сферы в приближении Гинье составляет $R = 67.2 \pm 2.3$ Å. Видно, что квантово-механическое описание гораздо лучше соответствует экспериментальным данным малоуглового рассеяния при малых величинах s. Оно дает конечное значение сечения в пределе при $s \rightarrow 0$.

Рис. 1: Экспериментальный спектр малоуглового рассеяния нейтронов с длиной волны 4.5 Å на сплаве NiCrAl и результат аппроксимации начального участка от ≈ 0.03 Å⁻¹ $do \approx 0.1$ Å⁻¹ этого спектра борновским приближением с потенциалом Юкавы (сплошная линия) и в приближении Гинье (пунктирная линия).

Отметим, что при малых величинах *s* в предположении строго одинаковых частиц получаем квадратичную зависимость от *s*, как и в приближении Гинье, которое не реализуется в случае наличия распределения по радиусам макроскопических частиц.

Разлагая (5) в ряд при малых *s*, получим квантово-механический аналог формулы Гинье:

$$\frac{dI}{d\Omega} = \frac{4I_0 L\rho N_A m^2}{\hbar^4} g^2 \xi^4 \sum_{k=0}^2 \frac{P_k}{A_k} \frac{R_k^4}{\left[1 + 2\left(s\xi R_k\right)^2 + \left(s\xi R_k\right)^4\right]} \approx \\
\approx \frac{4I_0 L\rho N_A m^2}{\hbar^4} g^2 \xi^4 \left(\sum_{k=0}^2 \frac{P_k R_k^4}{A_k}\right) \left(1 - 2s^2 \frac{\sum_{k=0}^2 P_k R_k^6}{\sum_{k=0}^2 P_k R_k^4}\right).$$
(6)

И при больших величинах *s* получаем зависимость $\sim 1/s^4$ как и в законе Порода, который справедлив в предположении строго одинаковых частиц и также не реализуется для наличия распределения макроскопических частиц:

$$\frac{dI}{d\Omega} = \frac{4I_0 L\rho N_A m^2}{\hbar^4} g^2 \xi^4 \sum_{k=0}^2 \frac{P_k}{A_k} \frac{R_k^4}{\left[1 + 2\left(s\xi R_k\right)^2 + \left(s\xi R_k\right)^4\right]} \approx \frac{4I_0 L\rho N_A m^2}{\hbar^4} \frac{g^2}{s^4} \left(\sum_{k=0}^2 \frac{P_k}{A_k}\right).$$
(7)

3. Макроскопическое описание в модели шаров. Угловое распределение интенсивности рассеяния в этой модели

$$I = \frac{d\Sigma}{d\Omega} = A \int_0^\infty f(R) \Phi^2(sR) \left(\frac{4\pi R^3}{3}\right)^2 dR, \ A = n(\rho_{\rm q} - \rho_{\rm m})^2,$$
(8)

где Σ – макроскопическое сечение материала образца, Ω – телесный угол, n – концентрация молекул, $\rho_{\rm q}$ – плотность частиц, $\rho_{\rm M}$ – плотность материала матрицы, f(R) – функция распределения по радиусам частиц, Φ – формфактор, s – переданный импульс, R – радиус частицы.

Применяя формулы, приведенные в работе [1] для шара и заменив t = sR, получаем распределение интенсивности по переданному импульсу в модели шаров:

$$I(s) = \frac{16\pi^2}{s^6} \int_0^\infty f(R) [\sin(sR) - sR\cos(sR)]^2 dR = \frac{16\pi^2}{s^6} \int_0^\infty f(t) \left(\sin t - t\cos t\right)^2 dt.$$
(9)

3.1. Интенсивность рассеяния для распределения Шульца–Цимма. В качестве распределения по размерам шаров выбирается нормированная на единицу плотность распределения вида:

$$df(R) = \frac{1}{\Gamma(k+1)\sigma^{k+1}} R^k e^{-\frac{R}{\sigma}} dR,$$
(10)

41

где использован табличный интеграл 860.07 из книги [2]. Тогда распределение интенсивности при рассеянии на шарах для распределения Шульца–Цимма имеет вид:

$$I(s) = \frac{1}{\Gamma(k+1)\sigma^{k+1}} \frac{(4\pi)^2}{s^6} \int_0^\infty R^k e^{-\frac{R}{\sigma}} [\sin(sR) - sR\cos(sR)]^2 dR.$$
 (11)

Вводим безразмерные величины: $a = 1/(s\sigma)$ и t = sR и получаем

$$I(s) = \frac{16\pi^2 a^{k+1}}{k! s^6} \int_0^\infty t^k e^{-at} (\sin t - t \cos t)^2 dt.$$
(12)

После длинных, но несложных преобразований, получим решение интеграла (12) [3]

$$\int_{0}^{\infty} t^{k} e^{-at} (\sin t - t \cos t)^{2} dt = \frac{k!}{2a^{k+1}} - \frac{\Gamma(k+1) \cos[(k+1)\theta]}{2(a^{2}+4)^{\frac{k+1}{2}}} - \frac{\Gamma(k+2) \sin[(k+2)\theta]}{2(a^{2}+4)^{\frac{k+2}{2}}} + \frac{(k+2)!}{2a^{k+3}} + \frac{\Gamma(k+3) \cos[(k+3)\theta]}{2(a^{2}+4)^{\frac{k+3}{2}}}.$$
(13)

При условии $k \in Z, k \ge 1$ получим $\Gamma(k+1) = k!$, $\Gamma(k+2) = (k+1)!$ и, обозначив $r = \sqrt{a^2+4}, \Theta_1 = (k+1)\theta, \Theta_2 = (k+2)\theta, \Theta_3 = (k+3)\theta$, получаем распределение интенсивности при рассеянии на шарах для распределения Шульца–Цимма:

$$I(s) = \frac{8\pi^2}{s^6} \left\{ 1 + \frac{k^2 + 3k + 2}{a^2} - \left(\frac{a}{r}\right)^{k+1} \left[\cos\Theta_1 + (k+1)\left(\frac{\sin\Theta_2}{r} - \frac{(k+2)\cos\Theta_3}{r^2}\right) \right] \right\}.$$
(14)

3.2. Интенсивность рассеяния для гауссовского распределения радиусов шаров. В качестве распределения по размерам шаров выбирается нормированная на единицу плотность распределения вида:

$$df(R) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(R-R_0)^2}{2\sigma^2}} dR, \qquad \frac{1}{\sqrt{2\pi\sigma}} \int_0^\infty e^{-\frac{(R-R_0)^2}{2\sigma^2}} dR = 1.$$
(15)

Интенсивность для гауссовского распределения вычисляется по формуле

$$I(s) = \frac{(4\pi)^2}{s^6} \int_0^\infty \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(R-R_0)^2}{2\sigma^2}} [\sin(sR) - sR\cos(sR)]^2 dR.$$
 (16)

Вычисления удобно проводить в безразмерных единицах заменой t = sR и $t_0 = sR_0$.

$$I(s) = \frac{(4\pi)^2}{s^7} \frac{\sqrt{s}}{\sqrt{2\pi s\sigma}} \int_0^\infty e^{-\frac{(t-t_0)^2}{2s^2\sigma^2}} (\sin t - t\cos t)^2 dt = \frac{16\pi^2}{\sqrt{2\pi s^7}} \frac{I_0}{\sigma},$$
 (17)

где *s* – переданный импульс, *R* и *R*₀ – текущий и наиболее вероятный радиус шара, *σ* – дисперсия распределения шаров по радиусам. Здесь

$$I_{0} = \frac{s\sigma}{2} \sqrt{\frac{\pi}{2}} \left(1 + t_{0}^{2} - 2\sqrt{\frac{2}{\pi}} s\sigma t_{0} + s^{2}\sigma^{2} \right) + s^{2}\sigma^{2} [t_{0}\cos 2t_{0} - (1 + s^{2}\sigma^{2})\sin 2t_{0}] - \frac{s\sigma}{2} \sqrt{\frac{\pi}{2}} e^{-2s^{2}\sigma^{2}} \left\{ [1 - t_{0}^{2} + s^{2}\sigma^{2}(3 + 4s^{2}\sigma^{2})]\cos 2t_{0} + (1 + 2s^{2}\sigma^{2})2t_{0}\sin 2t_{0} \right\} + \frac{s\sigma}{\sqrt{2}} F(s\sigma\sqrt{2}) \left\{ [1 - t_{0}^{2} + s^{2}\sigma^{2}(3 + 4s^{2}\sigma^{2})]\sin 2t_{0} - (1 + 2s^{2}\sigma^{2})2t_{0}\cos 2t_{0} \right\}, \quad (18)$$

где функция F(y) выражается через интеграл или ряд

$$F(y) = \frac{1}{2} \int_0^\infty e^{-\frac{t^2}{4}} \sin(yt) dt = \sum_{k=0}^\infty \frac{(-1)^k 2^k}{(2k+1)!!} y^{2k+1}.$$
 (19)

3.3. Интенсивность рассеяния для распределения Рэлея. Распределение интенсивности по величине переданного импульса при рассеянии на системе шаров с распределением Рэлея по радиусам имеет вид:

$$I(s) = \frac{16\pi^2}{s^6} \int_0^\infty \frac{R}{\sigma^2} e^{-\frac{R^2}{2\sigma^2}} [\sin(sR) - sR\cos(sR)]^2 dR,$$

где

$$\int_0^\infty \frac{R}{\sigma^2} e^{-\frac{R^2}{2\sigma^2}} dR = 1.$$
(20)

Решая интеграл, получим интенсивность рассеяния для распределения Рэлея:

$$I(s) = \frac{16\pi^2}{s^6} I_0 = \frac{16\pi^2}{s^6} \left\{ \frac{3}{4} + 2s^2\sigma^2 - s\sigma \left[\frac{5}{\sqrt{2}} + s\sigma \left(3 + 4s^2\sigma^2 \right) \right] F(s\sigma\sqrt{2}) \right\}.$$
 (21)

43

4. Анализ результатов. Как было показано выше, при малых переданных импульсах для описания экспериментальных данных малоуглового рассеяния нейтронов необходимо использовать квантово-механический подход. В диапазоне переданных импульсов $s = \frac{Q}{\hbar}$ от ≈ 0.06 Å⁻¹ до ≈ 0.13 Å⁻¹ было проведено моделирование экспериментального спектра малоуглового рассеяния нейтронов с длиной волны 4.5 Å на сплаве NiCrAl в классическом представлении рассения на шарах с различными распределениями для разных фракций. Результаты представлены на рис. 2.

Рис. 2: Моделирование экспериментального спектра малоуглового рассеяния нейтронов с длиной волны 4.5 Å на сплаве NiCrAl и результат аппроксимации второго участка от ≈ 0.06 Å⁻¹ до ≈ 0.13 Å⁻¹ этого спектра суперпозицией пяти фракций шаров с различными распределениями (см. текст).

В результате анализа было обнаружено, что для исследуемого экспериментального спектра основной вклад в рассеяние вносит фракция частиц, описываемая распределением Шульца–Цимма (11) с наиболее вероятным радиусом частиц 46 Å. Вторая фракция описывается тремя распределениями Гаусса (16) с наиболее вероятными размерами 10, 11 и 9 Å. Третья, малая фракция состоит из частиц с распределением по закону Рэлея (21) с наиболее вероятным радиусом 5 Å. Результаты расчетов приведены в табл. 1.

Таблица 1

Результаты аппроксимации экспериментальных данных набором распределений по радиусам макроскопических частиц

Распр. фракции	Вклад, см ⁻¹	Радиус макс., Å	Диспер., Å	Степень	Ослабл.
Шульц–Цимм	12.2963018	46.35		2	0.0431426
Рэлей	0.0006190	5	0.4100617		
Гаусс	0.0429991	10.1397037	0.4		
Гаусс	0.0417457	11.1991441	0.41		
Гаусс	0.0426561	9.2245972	0.42		

5. Выводы. 1. Показано, что квантово-механический подход в модели ядра с потенциалом Юкавы для расчета интенсивности рассеяния нейтронов при малом переданном импульсе лучше описывает спектр малоуглового рассеяния, чем классическая модель Гинье.

2. В модели шаров вычислена интенсивность рассеяния в зависимости от переданного импульса для суперпозиции различных распределений по размерам шаров: Гаусса, Рэлея и Шульца–Цимма.

3. Анализ малоуглового рассеяния нейтронов на сплаве NiCrAl позволил определить правильный характерный размер частиц образца 46 Å, который существенно отличается от величины 67 Å, полученного с помощью классического приближения Гинье.

Авторы выражают искреннюю благодарность Инне Владимировне Сурковой за полезные советы.

ЛИТЕРАТУРА

- Д. И. Свергун, Л. А. Фейгин, Рентгеновское и нейтронное малоугловое рассеяние (М., Наука, 1986).
- [2] Г. Б. Двайт, Таблицы интегралов и другие математические формулы. Пер. с англ. 2-е изд., испр. (М., Наука, 1966).
- [3] А. А. Афонин, А. В. Царев, В. С. Литвин, С. И. Поташев, Препринт ИЯИ РАН 1327/2012 (ИЯИ, Москва, 2012).

Поступила в редакцию 30 января 2017 г.