УДК 621.382:539.1.044

МИКРОФОКУСНЫЕ РЕНТГЕНОВСКИЕ ТРУБКИ С КРЕМНИЕВЫМ АВТОЭМИССИОННЫМ НАНОКАТОДОМ КАК ИСТОЧНИК РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ

Н. А. Дюжев¹, Г. Д. Демин¹, Т. А. Грязнева¹, А. Е. Пестов², Н. Н. Салащенко², Н. И. Чхало², Ф. А. Пудонин³

> Для создания наноструктур с предельно малым пространственным разрешением (до 10 нм и ниже) в данной работе предлагается новая концепция использования матриц микрофокусных рентгеновских трубок на основе автоэмиссионных кремниевых нанокатодов. Предложен новый перестраиваемый по λ микрофокусный источник рентгеновского излучения, основой которого является тонкопленочная прострельная мишень с автоэмиссионным нанокатодом с перестраиваемой длиной волны. Продемонстрирована возможность уменьшения размеров экспонируемой области до 20 нм и ниже путём вариации запирающего напряжения в трубке. Использование данных источников рентгеновского излучения открывает новый путь развития безмасочной рентгеновской литографии.

Ключевые слова: автоэмиссионный катод, безмасочная рентгеновская литография, микрофокусная рентгеновская трубка, полевая эмиссия, наноструктуры, вакуумная наноэлектроника.

В настоящее время ведутся интенсивные исследования, направленные на поиск методов создания транзисторных структур с топологическими размерами до 1–3 нм [1], что необходимо для создания различных устройств нано- и оптоэлектроники, МЭМС

¹ НИУ "МИЭТ", Москва, Зеленоград, пл. Шокина, д. 1; e-mail: gddemin@gmail.com.

 $^{^2}$ Институт физики микроструктур РАН (ИФМ РАН), ГСП-105, Нижний Новгород.

 $^{^3}$ ФИАН, 119991 Россия, Москва, Ленинский пр-т, 53; e-mail: pudonin@sci.lebedev.ru.

(микроэлектромеханических систем) и др. Ключевой технологией в современной полупроводниковой электронике является проекционная фотолитография. Нанометровое разрешение достигается за счет применения различных методов улучшения изображений [2]. С использованием этой технологии в настоящее время производится до 70% продукции наноэлектроники. Почти десятикратное превышение дифракционного предела рабочей длины волны литографа (193 нм) приводит к увеличению стоимости процесса и оборудования, и, как показывает практика, методы улучшения изображений практически исчерпали себя. Решение данного вопроса видится в использовании проекционной фотолитографии в экстремальном ультрафиолете (EUV литографии) с рабочей длиной волны 13.5 нм при формировании пятна критических размеров на чипе [3]. Однако и у этой технологии есть ряд проблем, которые не позволяют продвижению в суб-10 нанометровую область литографии [4], связанных, например, с недостаточной для массового производства производительностью, ресурсом источника EUV излучения, сложностью достижения числовой апертуры проекционного объектива NA > 0.5и др. Из-за особенностей EUV маски (отражающая многослойная структура с толщиной несколько сотен нанометров, покрытая поглощающим (порядка 100 нм) слоем), вследствие наличия эффектов затенения требуются совершенно нестандартные схемы, в частности, использование объектива с различным уменьшением в перпендикулярных направлениях [5]. На данный момент наиболее перспективным направлением считается многопучковая электронная литография, где уже имеется определенный прогресс. Однако и здесь также имеются серьезные проблемы, связанные с нагревом пластины, взаимодействием электронных пучков, а также высокой стоимостью такого литографа (~100 млн. евро).

Одним из возможных решений отмеченных выше проблем является безмасочная рентгеновская нанолитография (БМРНЛ), впервые предложенная в [6]. Интерес к этой технологии возник после работ [7, 8], где впервые было показано, что эта технология потенциально обладает высоким разрешением до 20 нм и производительностью, сравнимой с традиционной проекционной литографией. В таком рентгеновском литографе в качестве виртуальной маски выступают динамически управляемые МЭМС микрозеркала, а в качестве источника рентгеновского излучения используется лазерно-плазменный источник.

В данной работе в качестве альтернативы лазерно-плазменному источнику рентгеновского излучения и МЭМС предлагается использовать матрицы из микрофокусных рентгеновских трубок. Отличительной особенностью предлагаемой концепции является

Рис. 1: Схема рентгеновского нанолитографа на базе матрицы микрофокусных рентгеновских трубок из автоэмиссионных нанокатодов (MAK) с рентгенооптической системой фокусировки излучения, где M1, M2 – система многослойных интерференционных зеркал.

использование в качестве микрофокусных трубок триодных систем из автоэмиссионных нанокатодов с управляющей сеткой электродов и прострельной мишенью, представляющей собой рентгенопрозрачную мембрану с тонкой металлической пленкой. Автоэмиссионный нанокатод представляет собой кремниевое острие с наноразмерной эмиттирующей поверхностью, которое при подаче на сеточные электроды напряжения выше запирающего потенциала генерирует ток эмиссии, достаточный для формирования в мишени рентгеновского излучения, что показано на рис. 1, демонстрирующем общую схему нанолитографа с матрицей из автоэмиссионных нанокатодов.

Выбор бериллия в качестве материала мишени позволяет получить рентгеновское излучение на длине волны 11.4 нм, которое можно эффективно фокусировать посредством системы многослойных интерференционных зеркал Mo(Ru)/Be с коэффициентом отражения более 70%, что существенно упрощает схему нанолитографа и открывает путь к уменьшению литографических размеров до 20 нм и ниже [8]. В табл. 1 приведены некоторые параметры микрофокусных рентгеновских трубок на основе автоэмиссионных нанокатодов. Основой одиночной микрофокусной рентгеновской трубки является катодный узел, состоящий из полевого катода и управляющего сеточного электрода, и анодный электрод с прострельной мишенью, что показано на рис. 2(a). При определенном потенциале на аноде и сетке на поверхности катода формируется электрическое поле, достаточное для полевой эмиссии горячих электронов, вследствие чего в системе возникает электронный пучок, попадающий в металлическую мишень и задающий область генерации выходного рентгеновского излучения (рис. 2(6)).

Таблица 1

Параметры излучателя рентгеновского излучения на базе матрицы								
автоэмиссионных нанокатодов								
Диаметр пятна электронного пучка	200 нм							
Размер источника рентгеновского излучения	10 мм \times 10 мм (2.5 · 10 ⁷ пикселей)							
Параметры рентгеновского нанолитографа с излучателем								
на базе матрицы автоэмиссионных нанокатодов								
Длина волны рентгеновского излучения	11.4 нм							
NA объектива	0.5							
NA на входе	0.05							
Уменьшение	$10\times$							
Размер пикселя на пластине с фоторезистом	20 нм							
Коэффициент отражения многослойных								
интерференционных структур (МИС)	70%							
Доза экспонирования для чувствительного резиста	10 мДж/см ²							

Параметры рентгеновских трубок на основе автоэмиссионных нанокатодов

Таблица 2

Телесный угол θ' , в пределах которого сосредоточено 80% рентгеновского излучения, генерируемого в мишени (Be, Ta, W) при напряжении на аноде $V_A = 2500 B$

Материал	Be $(Z = 4)$		Ta (Z = 73)			W (Z = 74)			
мишени									
Поляризация	σ	π	непол.	σ	π	непол.	σ	π	непол.
излучения									
θ' , град.	71.98	43.38	64.57	71.01	42.81	63.34	70.97	42.79	63.29

Таким образом, посредством точной фокусировки электронного пучка предполагается с помощью зеркальной системы создавать направленное рентгеновское излучение и

Рис. 2: (а) Предлагаемая конструкция одиночной рентгеновской трубки (1 – автоэмиссионный катод, 2 – сеточный электрод, 3 – анод с прострельной мишенью, 4 – вакуумный промежуток, 5 – диэлектрические спейсеры); (б) изображение электронного пучка, выходящего с поверхности катода (траектория электронов показана при положительном напряжении на аноде V_A и напряжении на сетке $V_G = 0$ B).

проводить операции безмасочной рентгеновской литографии с предельным разрешением до 10 нм, что становится возможным с использованием рентгеновской оптики [9]. На рис. 3 представлены результаты моделирования электронной системы микрофокусной рентгеновской трубки, демонстрирующие возможность изменения размера электронного пучка при вариации отрицательного запирающего напряжения на сеточном электроде, что позволяет уменьшить диаметр D_B электронного пятна на прострельной мишени до 200 нм и ниже. Радиус острия катода полагался равным 5 нм, диаметр отверстия в сеточном электроде – 400 нм. Как видно из рис. 3, с увеличением расстояния "катоданод" (D_{KA}) в заданном диапазоне от 400 до 600 нм требуется меньшее запирающее напряжение V_G для уменьшения пятна трубки.

Ранее нами была предложена модель рентгеновского источника с автоэмиссионным нанокатодом, и определены оптимальные параметры, позволяющие получить максимальную интенсивность выходящего из мишени рентгеновского излучения и обеспечить высокую разрешающую способность [10]. На ее основе была предложена концепция перестраиваемого по спектру микрофокусного рентгеновского источника, состоящего из тонкопленочной прострельной мишени с автоэмиссионным катодом с перестраиваемой длиной волны, где перестройка осуществляется за счёт попадания электронного пучка на мишени заданного состава и материала, что обеспечивает требуемый спектр харак-

Рис. 3: Зависимость диаметра пятна D_B на мишени от запирающего напряжения V_G на сеточном электроде (при напряжении на аноде $V_A = 500~B$) для различного расстояния D_{KA} между катодом и анодом в рассматриваемой электронной системе микрофокусной рентгеновской трубки.

теристического излучения. Такой подход с перестройкой длин волн влияет на направленность и угловое разрешение преобладающей части генерируемого излучения для различных типов его поляризации, что позволяет менять угловую направленность излучения и может быть применимо к формированию наноразмерных топологических элементов слоев функциональной электроники [11]. Так на рис. 4 показаны результаты расчёта пространственного распределения рентгеновского излучения, генерируемого в тонкой металлической пленке прострельной мишени, состоящей из различных материалов (Ве, Та, W). Материал мишени выбран с учётом возбуждения единичного пика характеристической длины волны в случае напряжения на аноде V_A , варьируемом от 500 до 2500 В. Как видно из рис. 4, пространственное распределение является однородным по углу для σ -поляризации излучения, тогда как в случае π -поляризации излучение приобретает ярко выраженную угловую направленность. В свою очередь, угловое распределение неполяризованного излучения занимает промежуточное положение между излучением с σ - и π -поляризацией. Для генерируемых в трубке длин волн характеристического излучения $K_{\alpha 1}$ (Be) и M_{α} (Ta, W) поведение зависимостей интенсивности I от телесного угла θ слабо отличается друг от друга, что можно увидеть из графиков.

Рис. 4: Пространственное (угловое) распределение интенсивности I рентгеновского излучения различного типа поляризации (σ -поляризация, неполяризованное излучение (μ/n), π -поляризация), генерируемого в мишени различного состава (Be ($K_{\alpha 1}$), Ta (M_{α}), W (M_{α})) при напряжении на аноде $V_A = 2500$ B.

Таблица 2 обобщает выводы по полученным зависимостям интенсивности излучения от его угловой направленности, где рассчитан угол θ' , в пределах которого заключено порядка 80% суммарного рентгеновского потока, генерируемого в прострельной мишени. С учётом вариации типов поляризации излучения получено, что угловая направленность меняется в диапазоне от 43° до 72°. Это дает возможность управлять размером области экспонирования в процессе проведения безмасочной рентгеновской литографии. В силу простоты схемы предлагаемого здесь рентгеновского нанолитографа с подобным источником рентгеновского излучения, отсутствия дорогостоящего и габаритного лазерно-плазменного источника мягкого рентгеновского излучения и МЭМС может быть создан недорогой нанолитограф, не имеющий мировых аналогов. Таким образом, в работе предложена новая концепция нанолитографа с использованием матриц микрофокусных рентгеновских трубок в качестве источника рентгеновского излучения. Показано, что в этом случае удается довести литографические размеры до 20 нм и ниже. Это позволило предложить новый перестраиваемый по спектру микрофокусный источник рентгеновского излучения, основой которого является тонкопленочная прострельная мишень с автоэмиссионным нанокатодом с перестраиваемой длиной волны. Мы полагаем, что предлагаемая концепция микрофокусного источника рентгеновского излучения может стать основой для создания новых технологий в области нанолитографии и решит ряд ключевых научно-технологических проблем в области микро- и наноэлектроники.

Работа выполнена на оборудовании ЦКП "МСТ и ЭКБ" при поддержке Минобрнауки РФ, соглашение № 14.578.21.0188 (RFMEFI57816X0188).

ЛИТЕРАТУРА

- [1] M. M. Waldrop, Nature **530**, 7589 (2016).
- [2] Интернет pecypc: https://4pda.ru/2017/03/29/338955.
- [3] B. Wu and A. Kumar, Appl. Phys. Rev. 1, 011104 (2014).
- [4] Интернет pecypc: http://semimd.com/blog/2016/11/28/high-na-euv-lithographyinvestment/.
- [5] I. Servin et al., Proc. of SPIE **9423**, 94231C (2015).
- [6] N. Choksi et al., J. Vac. Sci. Technol. B 17, 3047 (1999).
- [7] N. I. Chkhalo, V. N. Polkovnikov, N. N. Salashchenko and M. N. Toropov, Proc. of SPIE 10224, 1022410-1-08 (2016).
- [8] N. I. Chkhalo and N. N. Salashchenko, AIP Advances 3, 082130 (2013).
- [9] J. Zhao, Y. Wu, C. Xue, et al., Microelectronic Engineering 170, 49 (2017).
- [10] Н. А. Дюжев и др., Поверхность. Рентгеновские, синхротронные и нейтронные исследования 4, 1 (2017).
- [11] В. А. Беспалов и др., Поверхность. Рентгеновские, синхротронные и нейтронные исследования (2017) (принята к печати).

Поступила в редакцию 8 декабря 2017 г.