УДК 539.1.076

АНАЛИТИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ КРИВОЙ БРЭГГА ДЛЯ РАБОТЫ С ДЕТЕКТОРОМ ТЕЛЕВИЗИОННОГО ТИПА НА РАДИОТЕРАПЕВТИЧЕСКОМ УСКОРИТЕЛЕ

А.В. Гринкевич¹, В.В. Сиксин²

Предложена математическая модель для работы вычислителя детектора телевизионного типа с аналитической аппроксимацией кривой Брэгга в простом виде для быстрых вычислений. Получена аналитическая формула, справедливая для энергий протонов от 60 до 180 МэВ, в основе которой лежит комбинация функций параболического цилиндра, дающая хорошее согласие с численными методами и экспериментальными данными.

Ключевые слова: область энерговыделения, водный фантом, адаптивная телевизионная камера, пик Брэгга, глубинное дозное распределение, аналитическая аппроксимация, функция параболического цилиндра.

Введение. Основной проблемой в планировании лучевой терапии является определение кривых зависимости доза-глубина (кривых Брэгга). Для улучшения качества протонной дозиметрии был предложен новый вид детектора "peacfinder" – детектор телевизионного типа, описанный ранее в работах [1, 2]. Детектор телевизионного типа реализует новую методику диагностики дозных полей, регистрируя и вычисляя точные распределения и значения основных характеристик пучка при планировании протонной терапии.

Типичный вид телевизионного кадра детектора показан на рис. 1.

На рис. 1 при энергии пучка протонов 80 МэВ показан результат попиксельного измерения длины "области свечения", который определяет величину z = 51 мм (z – точка остановки протона в водном фантоме, которую фиксирует детектор телевизионного типа по вспышке в конце пути протона). В результате экспериментов с детектором телевизионного типа получены результаты измерений пиков Брэгга в водном фантоме для различных энергий на терапевтическом протонном ускорителе г. Протвино [1].

¹ ООО "ЭВС", 195253 Россия, Санкт-Петербург, Салтыковская дорога, 18.

 $^{^2}$ ФИАН, 11999 1 Россия, Москва, Ленинский пр-
т, 53; e-mail: antktech@yandex.ru.

Рис. 1: "Область свечения", регистрируемая детектором телевизионного типа.

В вычислитель детектора заложена математическая модель, при отработке которой удалось получить аналитическую аппроксимацию кривой Брэгга в простом и удобном виде, позволяющем проводить быстрые вычисления в on-line режиме работы. Полученная аналитическая формула справедлива для энергий протонов от 60 до 180 МэВ. В предлагаемой модели в качестве основного базиса используется комбинация функций параболического цилиндра, описывающая кривые Брэгга. Полученная аналитическая модель согласуется с численными методами [3], а также с экспериментальными данными, описанными в литературе [4–6].

Получение аналитической зависимости дозы от глубины энерговыделения в водном фантоме. Для получения кривой аналитического вида зависимости поглощенной дозы в водном фантоме было отработано 21 значение энергии с шагом 5 МэВ в интервале энергий от 60 до 150 МэВ. В расчет поглощенной дозы закладывалась нормировка на падающий поток протонов на фантом, равный $1 \cdot 10^9$ протонов за импульс ускорителя. Выведенная аналитическая формула позволяет по величине *z*, измеренной детектором телевизионного типа, вычислить поглощенную дозу (в зависимости от *z* в светящемся пике Брэгга):

$$DOZA(z) = K_1 e^{-39.0625(R_0 - z)^2} [K_2 D_{-1.565}(-12.5(R_0 - z)) + 140.75 D_{-0.565}(-12.5(R_0 - z))],$$
(1)

где K_1 и K_2 – константы; R_0 – параметр, зависящий от начальной энергии E_0 налетающего протона [6]; z – точка (текущая глубина) в водном фантоме, измеренная детектором; $D_{-1.565}$ и $D_{-0.565}$ – функции параболического цилиндра.

В выведенной аналитической формуле (1) основным базисом являются функции параболического цилиндра $D_{-0.565}$ и $D_{-1.565}$ [8], два члена этой формулы (с разными амплитудами) позволяют правильно описать кривые Брэгга как DOZA(z). Подбирая коэффициенты в формуле (1) и параметр R_0 (фитируя), удалось получить удовлетворительное описание пиков Брэгга формулой (1) в интервале энергий 60–150 МэВ.

В таблице 1 приведены результаты работ по определению коэффициентов K_1 , K_2 и параметра R_0 для 10 энергий с шагом 10 МэВ.

Таблица 1

Энергия, МэВ	Параметр		
	K_1	K_2	R_0 , см
60	0.2221	0.9495	3.1259
70	0.1893	0.7511	4.17
80	0.1717	0.6352	5.18
90	0.1516	0.5471	6.35
100	0.1407	0.4808	7.65
110	0.1277	0.4304	9.06
120	0.1172	0.3922	10.53
130	0.1048	0.3614	12.12
140	0.0997	0.3385	13.65
150	0.0882	0.3186	15.33

Константы и параметры аналитического выражения (1)

Погрешность, с которой формула (1) описывает пик Брэгга по отношению к известным результатам, полученным по численным методам, например, в сравнении с MNCP [3], составляет ~2.5%. В работе [7], где также использовалась функция параболического цилиндра, наблюдалось аналогичное совпадение зависимости поглощенной дозы от глубины z с экспериментальными данными и численным методом.

Графическое представление пиков Брэгга показано на рис. 2.

Далее, используя результаты расчета по формуле (1), для каждой из 21 энергий, взятых с шагом 5 МэВ в интервале от 60 до 180 МэВ, в окрестности максимума пика Брэгга вычислялась средняя доза – было получено 21 значение поглощенной дозы для интенсивности пучка налетающих протонов 1 · 10⁹ за импульс.

Аппроксимация дозы полиномом 5-й степени. По 21-му значениям средней дозы, вычисленным по формуле (1), была проведена статистическая обработка нелинейным

Рис. 2: Кривые пиков Брэгга, определенные по формуле (1). E_0 от 60 до 150 МэВ слева направо с шагом 10 МэВ.

методом наименьших квадратов и определены параметры полинома 5-й степени. Получено следующее уравнение:

 $DOZA(z) = 82.8367 - 16.7705z + 2.20356z^2 - 0.158881z^3 + 0.005726z^4 - 0.00008065z^5.$ (2)

На рис. 3 приведены точки, определенные из формулы (1) и аппроксимирующая кривая, определяемая формулой (2).

Формула (2) является основой программного обеспечения детектора телевизионного типа и в представленном виде справедлива для интенсивности пучка налетающих протонов $1 \cdot 10^9$ за импульс. Совокупность формул (2), выведенных для практических значений применяемых интенсивностей, позволяет осуществлять конечные расчеты непосредственно вычислителем детектора.

Анализ точности измерения поглощенной дозы для клинического протонного пучка. Из нормативных актов в настоящее время действуют рекомендации МАГАТЭ 2004 года [9]. В главе 10 (Практические рекомендации для пучков протонов) определено, что для протонов с энергией в интервале от 50 до 250 МэВ при измерении поглощенной дозы вдоль центральной оси (ось z) допускается стандартная неопределенность измеренной дозы 2–2.3%.

Используя формулу (2) аппроксимации DOZA от z, была произведена оценка аналитической ошибки измерения дозы при пяти значениях энергий, для которых осуществлялись практические измерения величины z детектором телевизионного типа [1].

Рис. 3: Аппроксимирующая кривая по формуле (2) и точки, определенные по формуле (1).

Закладывая в формулу (2) требование по ошибке измерения дозы, равной 2%, определены допустимые аналитические ошибки в измерении длины по *z*, результаты вычислений которых представлены в табл. 2.

Таблица 2

Энергия, МэВ	Максимально допустимая ошибка Δz , мм
60	1.40
80	2.00
100	2.80
150	4.00
170	4.60

Допустимые аналитические ошибки в измерении величины г

Инструментальная ошибка в измерении длины по z определяется возможностями конструкции детектора телевизионного типа и вычисляется по формуле:

$$\Delta z_{\rm gr} = \frac{n_{\rm \pi} \cdot d_{\rm \pi}}{v_{\rm oc}},\tag{3}$$

где $\Delta z_{\rm dr}$ – инструментальная точность измерения длины пробега частиц детектором; $d_{\rm n}$ – размер пикселя телевизионного ПЗС фотоприемника (6.4 мкм); $n_{\rm n}$ – число пикселей телевизионного ПЗС фотоприемника, объединяемых в один (4); $v_{\rm oc}$ – параксиальное увеличение оптики сопряжения (-0.02).

Подставляя значения, получаем значение инструментальной ошибки детектора, равное $\Delta z_{\rm dr} = 1.28$ мм. Таким образом, телевизионный детектор позволяет измерять дозу с точностью, не хуже заданной рекомендациями МАГАТЭ для энергий протонов от 60 до 180 МэВ. Отработана математическая модель с аналитической аппроксимацией кривой Брэгга в простом и удобном виде, позволяющем проводить быстрые вычисления в on-line режиме работы.

Авторы выражают благодарность В. Е. Балакину за практические консультации и предоставление возможности работы на протонном ускорителе, А.И. Львову за консультации и поддержку работы, А.Е. Чернуха за творческие обсуждения численных методов при проведении расчетов дозных полей.

ЛИТЕРАТУРА

- А. В. Гринкевич, В. В. Сиксин, Краткие сообщения по физике ФИАН 44(2), 3 (2017).
- [2] А. В. Гринкевич, В. В. Сиксин, Краткие сообщения по физике ФИАН 44(5), 8 (2017).
- [3] J. F. Briesmelster, Report LA-13709-M (Los Alamos National Laboratory, Los Alamos, 2000).
- [4] K.-U. Gardey, "A Pencil Beam Model for Proton Therapy-Treatment Planning and Experimental Results", Ph.D. thesis, Universitat Heidelberg, 1996.
- [5] U. Oelfke, K.-U. Gardey, E.W. Blackmore, and G. K. Y. Lam, "Proton dosimetry at TRIUMF: Experimental profiles and PTRAN MC calculations", in PTCOG XXII, San Francisco, 1995. http://www.ptcog.ch/index.php/ptcog-publications.
- [6] J. F. Janni, At. Data Nucl. Data Tables 27, 147 (1982).
- [7] T. Bortfeld, Med. Phys. **24**(12), 2024 (1997).
- [8] M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical Functions (Dover, New York, 1972).
- [9] Серия Технических Докладов № 398. Международные практические рекомендации по дозиметрии, основанные на эталонах единицы поглощенной дозы в воде. При поддержке IAEA, WHO, PAHO и ESTRO (Международное агентство по Атомной энергии, Вена, 2004).

Поступила в редакцию 25 января 2018 г.