УДК 54.022

КВАНТОВО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ СТРУКТУРНОГО ДЕФЕКТА СТОУНА–УЭЛЬСА В ФУНКЦИОНАЛИЗИРОВАННОМ ФУЛЛЕРЕНЕ С₂₀

М. А. Салем, К. С. Гришаков, М. А. Гимальдинова

В рамках теории функционала плотности рассчитана энергия формирования и структура дефекта Стоуна– Уэльса в фуллерене C_{20} , допированном одной из функциональных групп H, Cl, F или OH. Показано, что тип функциональной группы и место ее прикрепления оказывают сильное влияние на энергию формирования дефекта. Установлено, что соединение $C_{20}F$ значительно устойчивее других рассмотренных систем – C_{20} Cl, $C_{20}H$ и C_{20} OH.

Ключевые слова: фуллерен, дефект Стоуна–Уэльса, функциональные группы, теория функционала плотности, энергия формирования.

Структурный дефект Стоуна–Уэльса [1] – основной дефект, возникающий в углеродных структурах с *sp*²-гибридизацией – фуллеренах, нанотрубках, графене и др. Его можно представить как поворот одной из углерод-углеродных связей на угол, близкий к прямому, что приводит к искажению углеродного скелета: образованию двух четырехугольников и двух шестиугольников на поверхности (см. рис. 1). Возникновение такого дефекта увеличивает реактивность *sp*²-гибридизованной углеродной сети [2, 3].

В настоящей работе рассматривается фуллерен C_{20} – наименьший из возможных фуллеренов, впервые синтезированный в 2000 году [4] (см. рис. 1). За счет большой кривизны поверхности, активационный барьер для формирования дефекта Стоуна– Уэльса в C_{20} значительно ниже, чем в фуллеренах большего размера [5, 6], и составляет около 4 эВ [5]. Получающийся дефектный изомер C_{20} является высоконапряженным, поскольку на его поверхности возникают два четырехугольных цикла, как это показано на рис. 1. Тем не менее, данные молекулярной динамики [7] подтверждают, что этот изомер значительно устойчивее других углеродных систем, содержащих большее число четырехугольных циклов – кубана [8], тетракубила [9], призманов [10], гиперкубана

НИЯУ "МИФИ", 115409, Россия, Москва, Каширское шоссе, 31; e-mail: ksgrishakov@yahoo.com.

Рис. 1: Трансформация Стоуна–Уэльса, переводящая бездефектный фуллерен C₂₀ (слева) в его дефектный изомер (справа). Цифрами I, II, III, IV обозначены неэквивалентные атомы углерода, к которым может прикрепляться функциональная группа.

[11, 12] и др. Дефектный фуллерен C₂₀ стабилен при нормальных условиях. При этом за счет напряженной структуры его реакционная способность выше, чем у обычного додекаэдрического C₂₀ и высших фуллеренов.

Основным препятствием к получению дефектного C_{20} служит энергетический барьер, препятствующий появлению дефекта Стоуна–Уэльса. Хотя его величина для C_{20} значительно ниже, чем для фуллеренов большего размера, она является все-таки слишком высокой для направленного органического синтеза. Понижение энергетического барьера возможно за счет замещающего допирования или функционализации. Известно, что азотное допирование понижает активационный барьер в фуллерене C_{20} на 1 эВ и более [13]. Функционализация фуллеренов водородом [14, 15] и хлором [16, 17] также приводит к понижению барьера. В настоящей работе мы исследовали, как наиболее распространенные функциональные группы – H, Cl, F и OH влияют на энергию формирования дефекта Стоуна–Уэльса и на структуру дефектных изомеров фуллерена C_{20} .

Расчеты проводились в рамках теории функционала плотности с гибридным обменно-корреляционным функционалом PBE0 [18] и электронным базисом 6-31G* [19]. Локальные минимумы энергии систем, отвечающие дефектным изомерам функционалированных фуллеренов, находились методом градиентного спуска: атомы сдвигались в направлении понижения полной энергии без каких-либо ограничений симметрии, пока действующие на них остаточные силы не становились меньше 0.001 эB/Å. Энергия формирования дефекта вычислялась как разность полных энергий дефектного и бездефектного изомеров. Все расчеты проводились при помощи программного комплекса GAMESS [20]. В бездефектном фуллерене C_{20} все атомы эквивалентны, а в дефектном – нет. Поэтому энергия формирования дефекта может зависеть от места прикрепления функциональной группы. Мы рассмотрели четыре различных неэквивалентных узла, расположенных вблизи дефекта и обозначенных цифрами I, II, III и IV на рис. 1. Результаты расчета приведены в табл. 1, откуда видно, что наименьшая энергия формирования дефекта соответствует положению III функциональной группы. Это означает, что именно в этом месте и будет образовываться дефект. Отметим, что минимальная энергия формирования дефекта для фторированного фуллерена в полтора раза выше, чем для других рассматриваемых соединений, что доказывает повышенную устойчивость системы C_{20} F. Зависимость энергий формирования дефектов от места прикрепления радикала объясняется разной степенью релаксации напряженного углеродного скелета, связанной с функционализацией. В табл. 1 приведены также длины связей l_0 и l_{def} между функциональной группой, находящейся в наиболее выгодном положении III, и соответствующим атомом углерода для бездефектного и дефектного изомеров, соответственно.

Таблица 1

Энергия формирования дефекта Стоуна–Уэльса (эВ) в фуллерене С₂₀ в зависимости от типа функциональной группы и места ее прикрепления (I, II, III или IV); длины связей l₀ и l_{def} между функциональной группой и соответствующим атомом углерода (Å) для бездефектного и дефектного изомеров, соответственно

	Ι	II	III	IV	l_0	$l_{\rm def}$
Η	1.50	1.09	0.53	1.10	1.101	1.104
Cl	1.60	1.06	0.53	1.06	1.707	1.712
F	1.53	1.11	0.75	1.12	1.341	1.342
OH	1.50	1.03	0.52	1.00	1.376	1.371

Из табл. 1 видно, что длины связей между атомами углерода и функциональных групп незначительно меняются в результате дефекта Стоуна–Уэльса. Таким образом, по длине связи нельзя судить о ее прочности.

Отдельный интерес представляет влияние двух одинаковых функциональных групп, осажденных на один и тот же фуллерен. Известно, что в графене наименьшей энергией обладают те структуры, в которых радикалы осаждаются на соседние атомы углерода (эффективное "притяжение" радикалов [21, 22]). В кубане, напротив, наблюдается эффективное отталкивание метил-радикалов [23]. Наши расчеты показали, что для фуллерена также характерно отталкивание между функциональными группами: наименьшей энергией обладают те изомеры, в которых функциональные группы расположены в диаметрально противоположных точках. Это обстоятельство связано с малым размером и сильной кривизной фуллерена C_{20} . Таким образом, дефект Стоуна–Уэльса, возникающий вблизи одной из функциональных групп, находится вдали от другой и почти не испытывает ее влияния. Поэтому энергия формирования каждого дефекта в наиболее устойчивых изомерах $C_{20}H_2$, $C_{20}F_2$, $C_{20}Cl_2$ и $C_{20}(OH)_2$, характеризующихся диаметрально противоположенным расположением радикалов, оказывается близкой к соответствующим значениям для $C_{20}H$, $C_{20}F$, $C_{20}Cl$ и $C_{20}OH$.

В заключение отметим, что проведенные расчеты показали зависимость энергии формирования дефекта Стоуна–Уэльса в функционализованном фуллерене C_{20} от типа функциональной группы и места ее прикрепления. Таким образом, имеется принципиальная возможность управлять дефектообразованием в углеродном скелете, используя различные радикалы. Этот эффект может лечь в основу технологии синтеза дефектных изомеров C_{20} , которые благодаря большой кривизне и наличию четырехугольных углеродных циклов обладают повышенной реактивностью.

Работа выполнена при финансовой поддержке Гранта Президента Российской Федерации № МК-4040.2018.2.

ЛИТЕРАТУРА

- [1] A. J. Stone, D. J. Wales, Chemical Physics Letters **128**(5-6), 501 (1986).
- [2] X. Lu, Z. Chen, P. R. Schleyer, Journal of the American Chemical Society 127(1), 20 (2005).
- [3] H. F. Bettiger, Journal of Physical Chemistry B **109**(15), 6922 (2005).
- [4] H. Prinzbach, A. Weller, P. Landenberger et al., Nature (London) 407, 60 (2000).
- [5] А. И. Подливаев, К. П. Катин, Д. А. Лобанов, Л. А. Опёнов, Физика твердого тела 53(1), 199 (2011).
- [6] А. И. Подливаев, К. П. Катин, Письма в ЖЭТФ **92**(1), 54 (2010).
- [7] К. П. Катин, А. И. Подливаев, Физика твердого тела **52**(2), 407 (2010).
- [8] М. М. Маслов, Д. А. Лобанов, А. И. Подливаев, Л. А. Опёнов, Физика твердого тела 51(3), 609 (2009).
- [9] М. М. Маслов, К. П. Катин, А. И. Авхадиева, А. И. Подливаев, Химическая физика 33(4), 27 (2014).

- [10] С. А. Шостаченко, М. М. Маслов, В. С. Прудковский, К. П. Катин, Физика твердого тела 57(5), 1007 (2015).
- [11] F. Pichierri, Chemical Physics Letters **612**, 198 (2014).
- [12] M. M. Maslov, K. P. Katin, Chemical Physics Letters **644**, 280 (2016).
- [13] K. P. Katin, M. M. Maslov, Physica E **96**, 6 (2018).
- [14] R. W. Alder, J. N. Harvey, Journal of the American Chemical Society 126, 2490 (2004).
- [15] A. J. M. Nascimento, R. W. Nunes, Nanotechnology 24, 435707 (2013).
- [16] I. N. Ioffe, O. N. Mazaleva, C. Chen et al., Dalton Transactions 40, 11005 (2011).
- [17] O. N. Mazaleva, I. N. Ioffe, F. Jin, Inorganic Chemistry 57(8), 4222 (2018).
- [18] C. Adamo, V. Barone, Journal of Chemical Physics **110**(13), 6158 (1999).
- [19] R. Krishman, J. S. Binkley, R. Seeger, J. A. Pople, Journal of Chemical Physics 72(1), 650 (1980).
- [20] M. W. Schmidt, K. K. Baldridge, J. A. Boatz et al., Journal of Computational Chemistry 14, 1347 (1993).
- [21] D. W. Boukhvalov, Y.-W. Son, ChemPhysChem 13, 1463 (2012).
- [22] K. P. Katin, V. S. Prudkovskiy, M. M. Maslov, Physics Letters A 381, 2686 (2017).
- [23] K. P. Katin, V. S. Prudkovskiy, M. M. Maslov, Physica E 81, 1 (2016).

По материалам VII Международной молодежной научной школы-конференции "Современные проблемы физики и технологий".

Поступила в редакцию 4 июля 2018 г.