УДК 53.043, 53.082.79

СОУДАРЕНИЯ ПОЛОЖИТЕЛЬНЫХ ИОНОВ (H⁺, Cl⁺, HCl⁺) С МЕТАЛЛИЧЕСКОЙ ПОВЕРХНОСТЬЮ: ЭМИССИЯ ВТОРИЧНЫХ ЭЛЕКТРОНОВ И ОТРИЦАТЕЛЬНЫХ ИОНОВ

А.И. Чичинин¹, М. Порецкий², К. Мауль², К.-Х. Герике²

Внутри времяпролетного масс-спектрометра создана ловушка для положительных ионов (H⁺, Cl⁺, HCl⁺). Измерены выходы вторичных электронов и отрицательных ионов (HCl⁻, H⁻), образующихся в результате прямого и обратного рассеяния положительных ионов на стальной проволоке при различных кинетических энергиях (200– 750 эВ).

Ключевые слова: времяпролетная масс-спектрометрия, H⁻, Cl⁻, HCl⁻, столкновения ионов с поверхностью, резонансно-усиленная многофотонная ионизация.

Введение. Обмен зарядами между положительными ионами и твердой поверхностью известен с 1931 и в настоящее время изучен экспериментально [1–6] и теоретически [6–10]. Важным применением этого эффекта является вторичная ионная массспектрометрия (ВИМС, SIMS), появившаяся в 1960-х годах. Эта техника считается вероятно самой чувствительной техникой для анализа химического состава поверхности.

Например, в работе [1] низкоэнергетическое рассеяние (НЭИР, LEIS) ионов H^+ и He^+ Ne⁺ поверхностью из сплава Pt_3Sn использовалось для выяснения соотношения между Pt и Sn, причем сравнивалось с другими техниками (ESCA, Auger, Co absorption). Оказалось, что только НЭИР и Co absorption способны определить это соотношение на поверхности сплава, которое часто очень сильно отличается от соотношения в объеме.

Существуют и другие применения этого эффекта. Например, отрицательные ионы, полученные на поверхности из цезия, используются для получения пучков из нейтраль-

¹ Институт химической кинетики и горения СО РАН и Новосибирский Государственный университет, 630090 Россия, Новосибирск; e-mail: Chichinin@kinetics.nsc.ru.

² Institut für Physikalische und Theoretische Chemie, TU Braunschweig, 38106 Braunschweig, Germany.

ных частиц с большой энергией (> 100 кэВ) в международном экспериментальном термоядерном реакторе (ITER).

Рис. 1: Вверху: схема времяпролетного масс-спектрометра. ЛЗ – линии задержки, МКП – микроканальные пластины. Внизу изображены три конфигурации напряжений: 1) для одновременной регистрации A⁻ и A⁺, 2) для ловушки для A⁻, регистрация A⁺, 3) ловушка для A⁺. Здесь A⁺ и A⁻ – обозначения положительных и отрицательных ионов. Указаны напряжения в ключевых плоскостях (отмечены кружками). В самом низу – размеры в мм.

Для рассеяния "медленных" ($E_{\rm kin} < 1$ кэВ) ионов, то есть НЭИР, имеется два механизма: в первом из них перезарядка возникает за счет энергии рекомбинации, а во втором – за счет кинетической энергии положительного иона [2]. Нас в данной работе будет интересовать этот второй "кинетический" механизм. Экспериментальная установка. Установка состоит из двух частей: времяпролетного масс-спектрометра (ВПМС) и лазерной системы [11]. Схема ВПМС представлена на рис. 1: это цилиндр диаметром 10 м, на обоих концах которого находятся детекторы ионов. Цилиндр с помощью стальных сеток разбит на три отсека. В центральном отсеке имеется постоянное электрическое поле, боковые отсеки предназначены для свободного пролета ионов и электронов. В середине ВПМС ось масс-спектрометра пересекают под прямыми углами импульсный молекулярный пучок и лазерный луч. Лазерный луч создает положительные ионы и электроны с помощью Резонансно-Усиленной Много-Фотонной Ионизации (РУМФИ).

С обоих концов цилиндра находятся двуслойные микроканальные пластины (МКП) диаметром 8 см (Hamamatsu, 60% площади занято отверстиями диаметром 25 мкм). При попадании в них фотонов, электронов или ионов, они порождают $\sim 10^6$ электронов, которые ускоряются к находящимся за МКП "трехмерным" детекторам (Roentdek). Каждый детектор – это две линии задержки (ЛЗ), намотанные на прямоугольный каркас. Измерение времени появления сигнала на концах ЛЗ позволяет вычислить и координаты "события", и его время. Вакуумная камера откачивалась двумя турбомолекулярными насосами, до давления 10^{-6} мбар.

Образование ионов HCl⁻ и электронов, при прямом (e_j) , и при обратном (e_b) рассеянии ионов HCl⁺ (в конфигурации 3).

Времяпролетный профиль *E*_{kin} = 750 эВ. Для каждого пика в скобках указано, из какого иона получилась отрицательная частица.

Рис. 2: Слева: осцилляции ионов HCl⁺ между двумя отталкивающими электрическими полями E, приводящие к столкновениям с решетками G1, G2. Движение для наглядности растянуто вдоль вертикальной оси. Лазерная система состоит из Nd-YAG-лазера, который накачивает лазер на красителе, излучения которого, после ББО-кристалла, то есть с удвоенной частотой (234– 240 нм, 10 Гц, 100 мкДж/имп), фокусируется в центре ВПМС.Использовался сверхзвуковой холодный (7 К) молекулярный пучок из чистого HCl. Двухфотонное возбуждение молекул HCl производилось на переходе из основного состояния в состояния $V^1\Sigma^+(v' = 12, 15; J' = 0)$ с частотами 84745.60 см⁻¹ для v' = 12 и 86401.6 см⁻¹ для v' = 15 [12]. Первый из этих двух переходов хорош тем, что порождает, наряду с HCl⁺, Cl⁺ и H⁺, рекордное количество ионов Cl⁻ [12].

Элементарный состав нержавеющей проволоки, из которой сделаны сетки, был изучен с помощью электронного микроскопа (JEOL JSM 6400), использующего дисперсионную рентгеновскую флуоресценцию (EDX). Массовый состав проволоки, Cr/Fe/Ni = 18.52/73.32/8.15, доли даны в %. Диаметр проволоки 52 мкм, расстояние между проволоками 0.5 мм, то есть каждая сетка закрывает собой 19% площади.

Эта установка была создана в Брауншвайге(Германия), но в связи с выходом на пенсию проф. К. -Х. Герике в 2017 году переехала в Новосибирск.

Результаты и их обсуждение. В данной работе в основном использовалась третья конфигурация напряжений, см. рис. 1, то есть "ловушка" для положительных ионов, которые осциллируют между точкой зарождения и МКП. Во время пролета в одну строну эти ионы могут дважды рассеяться на сетках G1 и G2, при этом либо порождая электроны, либо нейтрализуясь, либо порождая отрицательные ионы. На рис. 2 дан времяпролетный профиль и схема соударений ионов HCl⁺ с сетками. Точки этих соударений отмечены символами P1, P2, P3,..., а для ионов Cl⁺ — Pa, Pb, ...

Наблюдая затухание сигнала отрицательных ионов или электронов, можно вычислить, какая доля положительных ионов гибнет в результате каждого столкновения с сетками. Оказалось, что 19%, то есть столько же, сколько площади занимает сетка от сечения масс-спектрометра. Это означает, что попадание положительных ионов в проволоку ведет к гибели этого иона, то есть перезарядку, причем, как известно из литературы [1], нейтральных частиц образуется намного больше, чем отрицательных.

На рис. 3 показаны зависимости выхода электронов $[e^-]/\Delta$ [HCl⁺] от кинетической энергии E_{kin} ионов Cl⁺ и HCl⁺. Здесь и дальше в отношениях вида [A⁻]/ Δ [B] числитель – это количество зарегистрированных отрицательных частиц A⁻ (A= e, H и HCl), а знаменатель – количество ионов B, "погибших" в этом столкновении с сеткой (B=H⁺, Cl⁺, HCl⁺ и Cl⁻). Разность Δ [B] находится из экспериментов в первой конфигурации рис. 1. Зависимости на рис. 3 квадратичны.

Рис. 3: Рассеяние ионов HCl⁺ и Cl⁺, приводящее к эмиссии электронов. Показаны результаты подгонки разными функциями. Слева $e_b : b = 2.3 \pm 0.2$ и $e_f : b = 2.1 \pm 0.2$, справа $e_b : b = 2.17 \pm 0.2$ и $e_f : b = 1.94 \pm 0.2$.

Похожие зависимости приведены, например, в работе [3], где наблюдалась эмиссия электронов с поверхности кристаллического золота в результате бомбардировки ионами H⁺, He⁺ Ne⁺ Ar⁺ и Xe⁺.

На рис. 4 показаны зависимости в результате рассеяния ионов Cl^- и H^+ от E_{kin} . В опытах с ионами Cl^- использовалась первая конфигурация напряжений (см. рис. 1), "нормальная" регистрация отрицательных ионов. Зависимость оказалась не квадратич-

Рис. 4: Рассеяние ионов Cl- (слева) и H⁺ (справа), приводящее к эмиссии электронов.

Рис. 5: Рассеяние ионов HCl^+ , приводящее к образованию HCl^- . Слева: данные для рассеяния назад умножены в 5 раз, $P2: b = 2.06 \pm 0.14$. Справа: времяпролетный профиль ионов HCl^- . Справа: времяпролётный профиль ионов HCl^- .

ной, а "корневой", $[e^-] \sim \sqrt{[Cl^-]}$ (см. рис. 4 слева). Найти аналогичные эксперименты в литературе нам не удалось.

Что касается перезарядки ионов H⁺ (см. рис. 4 справа), то графики совершенно не похожи на графики для перезарядки ионов Cl⁺ и HCl⁺ (см. рис. 3), хотя и измерены в очень узком интервале $E_{\rm kin}$. Это пока непонятно.

На рис. 5 показаны зависимости выхода ионов HCl^- в результате рассеяния ионов HCl^+ от $E_{kin}(HCl^+)$, а также времяпролётный профиль ионов HCl^- . Вертикальным пунктиром показано, где должен быть пик, если бы после соударения с решеткой G2 ионы HCl^- имели скорость, как у исходного иона HCl^+ (слева) или нулевую скорость (справа). Пик, как видим, находится посередине.

Почему ионы HCl⁻ меняют скорость? В работе [4] показано, что образование ионов H⁻ при бомбардировке протонами поверхностей из Mg, Al и Ag имеет сильную угловую зависимость: ионы H⁻ вылетают под углами ~35° к поверхности (угол падения 4°, энергия протонов 4 кэВ).

Интересно также очень широкое распределение около пика P2 $(\text{HCl}^+)_f^-$ на рис. 5 справа. Вероятнее всего – это нейтральные атомы Cl и HCl, получившиеся в результате нейтрализации на сетке. И значит, при специальной подготовке эксперимента можно будет изучать рассеяние положительных ионов, приводящее к нейтрализации.

Заключение. Предложена новая техника для исследования перезарядки ионов при столкновении с металлической поверхностью. Достоинства этой техники:

1) Положительный ион может быть приготовлен методом РУМФИ в заданном электронно-колебательно-вращательном состоянии, к тому же с ориентированным вращательным моментом. В результате можно изучать, например, как рассеяние и перезарядка положительных ионов зависит от их вращательного возбуждения и его ориентации.

2) Методом РУМФИ можно приготовить множество различных многоатомных положительных ионов для изучения их столкновений с поверхностью. Других таких чистых методов приготовления сложных ионов, по-видимому, нет.

3) Изучение столкновений ионов с металлическими сетками полезно для усовершенствования конструкций времяпролетных масс-спектрометров, особенно для регистрирующих отрицательные ионы. Например, для выбора подходящего материала сеток или сечения проволоки, для которых вероятность столкновительной перезарядки минимальна.

ЛИТЕРАТУРА

- [1] H. H. Brongersma and T. M. Buck, Nuclear Instr. and Methods 149, 569 (1978).
- [2] E. V. Alonso, R. A. Baragiola, J. Ferror, et al., Phys. Rev. B 22, 80 (1980).
- [3] G. Lakits, F. Aumayr, M. Heim, and H. Winter, Phys. Rev. A 42, 5780 (1990).
- [4] M. Maazouz, A. G. Borisov, V. A. Esaulov, et al. Phys. Rev. B 55, 13869 (1997).
- [5] N. Lorente, J. Merino, F. Flores, and M. Yu. Gusev, Nuclear Instr. Methods Phys. Res. B 125, 277 (1997).
- [6] J. Los and J. J. C. Geerlings, Physics Reports **190**, 133 (1990).
- [7] J. W. Gadzuk, Surface Science 6, 133 (1967).
- [8] R. Brako and D. M. Newns, Rep. Prog. Phys. 52, 655 (1989).
- [9] S. Kondo and K. Yamada, J. Phys. Soc. Jpn. 72, 650 (2003).
- [10] M. C. Torralba, P. G. Bolcatto, and E. C. Goldberg, Phys. Rev. B 68, 075406 (2003).
- [11] M. S. Poretskiy, A. I. Chichinin, C. Maul, and K. -H. Gericke, Rev. Sci. Instr. 87, 023107 (2016).
- [12] A. Kvaran, A. Logadottir, and H. Wang, J. Chem. Phys. **109**(14), 5856 (1998).

По материалам международной конференции "Физика и химия горения" (International Conference Combustion Physics and Chemistry), Самара, 2018.

Поступила в редакцию 19 сентября 2018 г.