Краткие сообщения по физике № 2 1980

ИССЛЕДОВАНИЕ ФАЗОВОГО ПРЕВРАЩЕНИЯ В Posnse -

О. В. Александров, К. В. Киселева

УДК 548.732

При исследовании структуры твердого раствора Рьо, 57^{Sn}0, 43^{Se} в интервале температур IO-300 К методом энергодисперсионного анализа дийрагированных рентгеновских дучей обнаружен структурный фазовый переход. Рассчитаны параметры ячейки новой орторомбической фазы. Показана возможность использования энергодисперсионного дифрактометра для исследования кинетики быстропротекарщах процессов.

Беление. Известно, что псевдобинарная система PbSe – SnSe не образует непрерывного ряда твердых растворов, поскольку состоит из соединений, относящихся к различным структурным типам. Согласно /I/ при комнатной температуре для сплава в области составов 0 < x < 0,43 характерна кубическая решетка, тогда как в области составов 0,75 < x < 1 этот сплав кристаллизуется в орторомбической решетке.

Впервне указание на существование низкотемпературного фазового превращения в сплаве Pb_{0,58}Sn_{0,42}Se было получено в /2/, где вблизи 250 К авторы наблюдали скачкообразное изменение электросопротивления и ширины запрещенной зоны этого материала. Однако на основании электрофизических измерений авторы не могил определить тип новой структуры. В связи с этим нам представлялось целесообразным выполнить прямые структурные исследования этого сплава в интервале температур от 300 до 10 К.

2. <u>Метоника эксперимента.</u> В работе использовался сравнительно новый метод энергодисперсионного анализа дифрагированных рентгеновских дучей, который впервые был осуществлен в 1968 г. /3/.

В отличие от стандартного дифрактометрического метода, основанного на исследовании углового распределения дифрагированных 22 рентгеновских лучей с постоянной длиной волны, в этом методе реализуется иной метод определения межплоскостных расстояний d_{hk1} кристалличэской структуры, заключающийся в исследовании энергетического спектра дифрагированных рентгеновских лучей (совокупности **L**_{hk1}) при постоянном угле 20 между падающими и дифрагированными лучами.

Уравнение Вульфа-Брэгга в этом случае трансформируется к виду:

$$E_{hkl} = \frac{6.199}{d_{hkl} \sin \theta}$$
 (ReB),

Из уравнения следует, что при взаимодействии полихроматического излучения с кристаллической решеткой исследуемого материала в направлении угла 20 будет дифрагировать лишь то излучение, энергия которого удовлетворяет этому уравнению. Спектральный анализ дифрагироранного излучения позволяет извлечь набор характерных для исследуемого кристалла межилоскостных расстояний и, следовательно, получить информацию о его кристаллической структуре.

Использованный в работе энергодисперсионный дифрактометр был создан нами на основе стандартного источника рентгеновских лучей (ВИП-2-50-60 с рентгеновской трубкой ЕСВ-8- W), рентгеновского гонкометра ГУР-4, полупроводникового Si(Id)-детектора с энергетическим разрешением ~ ISO эВ, многоканального амплитудного анализатора на 4096 каналов и соединенной с ним системы вывода информации. С целью упрощения обработки экспериментальных данных была установлена зависимость между номером канала амплитудного анализатора и энергий регистрируемых квантов, для чего производилась калибровка шкалы прибора по линиям радиоактивного источника ⁵⁵ге, характеристического излучения с трубки с W-анодом (WL_{β1} и WL_{β1}) и ряду флуоресцентных рентгеновских линий, неизбежно появляющихся при облучении исследуемого образца полихроматическим рентгеновским издучением.

Гелиевый криостат, на хладопроводе которого фиксировался образед, домещался на специальное истировочное устройство, которое, в свою очередь, укреплялось на рентгеновском гониометре. Температура образцов могла изменяться от 300 до IO К. Рабочий угол (16,980 ± 0,005⁰) был вноран таким, чтобы не происходило наложения дифракционных линий Pb_{1-х}Sp₂Se на флуоресцентные линия исследуемого образца и характеристические линии анода трубки.

Относительная точность измерения межилоскостных расстояний d_{hk1}, определяемая энергетическим разрешением детектора, стабильностью работы усилителя и амилитудного анализатора, полушериной брэгтовских рефлексов (последняя, в свою очередь, зависит от геометрических и физических аберраций /4/), в интервале энергий IO + 40 каВ составляла ~0,02% При этом время регистрации нескольких порядков отражения от монокристаллов было около IO с, а время регистрации полной дифрекционной картины от поликристаллов не превышало 3 + 5 минут.

В работе исследовались моно- и поликристалли Рь_О 500 в Монокристаллические образцы (пластины) выкалывались по плоскостям спайности {IOO} из монокристаллических слитков. Поликристалли получались цутем растирания монокристаллов и последущего откита полученного порошка, так как было обнаружено, что обичное растирание кубических монокристаллов такого состава в агатовой ступке визивает в них структурное превращение, и линь многочасовой откит при 200° С возвращает кристаллическую ренетку в исходную кубическию сингонию (рис. I, верхняя и нижняя кривая).

3. Результати измерений. Монокристалим и отоженные поликристалли $Pb_{0.57}sn_{0.43}$ в имели при 300 К кубическую реметку тина NaCl с параметром a = 6,072 ± 0,001 Уто хороно согласуется с известными данными (см., например, /5/).

Исследования структуры этого сплава в интервале от 300 до 10 К показали, что волизи 200 К происходит лишь одно структурное превращение, сопровожданщееся резким понижением симметрия кристаллической решетки. Так, пом этой температуре спектрограммы поликристаллических образцов претерпевали кореннур перестройку, а затем оставались неизменными (за исключением олабого смецения линий по вкале энергий вследствие изменения температуры) вплоть до 10 К (см. рис. 2). На спектрограммах монокристаллов, содержащах при T>200 К линь отражения типа (h00), появлялись дополнительные максимуми (см. рис. 3, верхняя и никняя кривые), интенсивность которых по мере понижения температуры увеличивалась. Последнее позволяет предположить, что обнаруженный структурный переход является фазовым переходом I-го рода.

Обнаружен гистерезис структурного превращения, проявлящийся

Рис. I. Спектрограмми неотожкенных и отожженных поликристалнов ^{Pb}0,57^{Sn}0,43^{Se}(соответственно верхняя и никняя кривые)

Р м с. 2. Проиндицированные птрихрентгенограммы поликрасталлов Pb_{0,57}Sn_{0,43}Se, полученные на разных стадиях термоцикла (при 300, 77 и 300 К)

но-разному в моно- и поликристаллах. В монокристаллях после первичного цикла охлаждение-нагрев структурный переход бых обратимым, и липь в результате повторных термоциклов, помимо сильного растрескивания монокристалла и превращения его в поликристалл, развивался гистерезис структурного нерехода. У поликристаллических порошков гистерезис наступал сразу же носле первого термоцикла (см. рис. 2).

Рис. 3. Участок спектрограмм ориентированного по плоскости {100} монокристалла Pb_{0.57}Sn_{0.45}Se при 300 и 77 К (соответственно верхняя и нижняя кривне)

Вследствие использованной в работе рентгеноонтической стеми расинфровка структури $Pb_{0.57}Sn_{0.45}$ в проведена по спектрограммам поликрысталлических образцов. Все линии (порядка двадцати) онли проиндипаровани (см. рис. 2) в орторомонческой сингонии с параметрами элементарной ячейки а = 4,387 ± 0,005 Å, b = 4,274 ± ± 0,005 Å и с = II,728 ± 0,005 Å. В соответствии с условиями погасания эта орторомонческая структура, по-видимому, относится и пространственной групне Респ, а не к Релп, к которой принадлекит SnSe /6/.

Сопоставлением спектрограмм рис. I и рис. 2 нетрудно убедиться в том, что идентичную орторомойческую структуру присоретает кубическая ренетка исследуемого сплава в результате прилодения механических воздействий.

26

Таким образом, структурный переход Рь_{О,57}ст, 43^{Se} из кубической сингонии в орторомбическую возникает при охландении до 200 К и в результате механических воздействий при T>200 К, причем переход обладает сильным гистерезисом.

В заключение авторы выражают благодарность И. В. Кучеренко за любезное предоставление монокристаллов и полезное обсуждение результатов. Поступила в редакцию

З октября 1979 г.

Литература

- A. I. Strauss, Trans. Metallurg. Soc. AIME 1968, <u>242</u>, No 3, 354 (1968).
- I. V. Kutcherenko, V. N. Moiseenko, A. P. Shotov, B. A. Volkov, K. V. Vyatkin, Proc. of 14th Int. Conf. on Semicond. (Edinburg) 1979, p. 449.
- 3. B. C. Geissen, G. E. Gordon, Science, 159, 973 (1968).
- 4. Д. М. Хейкер, Кристаллография, 23. вып. 6, I288 (I978).
- 5. I. C. Wooley, O. Beralo, Mat. Res. Bull., 3, No 5, 445(1968).
- 6. R. F. Brebrik, E. Cubner, J. Chem. Phys., 36, 1283, (1962).