Краткие сообщения по физике № 4 1980

О ПОНИЖЕНИИ ПОРОГА ВРМБ В ПОЛУПРОВОДНИКАХ ТИПА АШВУ

Л. М. Горбунов

УДК 535.375

Показано, что в узкозонных полупроводниках порог ВРМБ можно понизить с помощью электроакустического эффекта, пропуская постоянный ток поперек матнитного поля.

I. Наблюдение параметрических неустойчивостей в полупроводниковой плазме позволит исследовать многие линейные и нелинейные характеристики полупроводника, а также может явиться основой для создания новых генераторов и преобразователей излучения. Однако пороговые поля для этих неустойчивостей по оценкам ряда работ /I-8/ оказываются достаточно высокими и составляют IO⁴ -IO⁶ В/см в оптическом диапазоне частот. Без существенных изменений в свойствах полупроводников такие поля можно создать лишь в течение коротких промежутков времени, что затрудняет наблюдение параметрических неустойчивостей.

Один из способов уменьшения пороговых полей для параметрических неустойчивостей распадного типа (t-t s), приводящих к ВРМБ, был предложен в работе /9/ и обсуждался в работах /10, II/. Этот способ связан с уменьшением затухания звуковых волн при протекании постоянного тока из-за электроакустического эффекта /12-15/. Для полупроводников с широкой запрещенной зоной (например, для CdS) такой способ позволяет существенно понизить порог ВРМБ без изменения свойств полупроводника. В отличие от этого, для полупроводников с узкой запрещенной зоной, к числу которых относятся многие полупроводники типа A^HB^V (InSb, InP, InAs), требуемое уменьшение затухания звука достигается при постоянных электрических полях, превыпающих порог ударной ионизации. Для таких полупроводников, однако, электроакустический

36

эффект существенно увеличивается при протекании тока поперек магнитного поля /12-15/. И это дает возможность, как будет показано ниже, понизить порог ВРМБ.

2. Будем считать, что магнитное поле в ориентировано вдоль оси од (см. рис. I), а постоянное электрическое поле в вдоль оси оу, совпаданцей с осью (IIO). Примем, что волна накачки с

Рис. I. Ориентация постоянных и переменных электрических и магнитных полей относительно кристаллографических осей

частотой распространяется вдоль оси ОУ и электрическое поле в волне т направлено по оси ОZ. Рассмотрим рассеяние в оптическом резонаторе /I6/ только в направлении оси ОУ на поперечной звуковой волне, для которой электроакустический эффект максимален. Вектор деформации вдоль оси ОZ (u = (0,0,u)) определяется уравнением:

$$\rho \partial^2 u / \partial t^2 = \partial T / \partial y, \qquad (1)$$

где о плотность, T = T_{zy} - соответствующая компонента тензора натяжений, связанная в линейном приближении с упругими, вязкими, электростатическими и стрикционными силами соотношением /9/:

$$\mathbf{T} = \lambda (\partial \mathbf{u} / \partial \mathbf{y}) - \beta \mathbf{E} + 2\mathbf{a} \mathbf{\tilde{E}}_{o} \mathbf{\tilde{E}}' + \eta (\partial \mathbf{u} / \partial \mathbf{t}), \qquad (2)$$

где λ - коэффициент упругости, β - пьезоэлектрическая постоянная, Е - продольное электрическое поле, а - коэффициент электрострикции, Е́ - электрическое поле рассеянной волны, η - коэффициент сдвиговой вязкости. Продольное поле определяется уравнением Цуассона

$$\partial D/\partial y = 4\pi en,$$
 (3)

где n – возмущение концентрации электронов проводимости в звуковой волне, D = $\epsilon_0 E + \beta (\partial u / \partial y)$, ϵ_0 – низкочастотная дивлектрическая проницаемость решетки.

Будем считать, что длина звуковой волны болыше длины свободного пробега электрона и для описания электронного газа используем уравнения гипродинамики:

$$\frac{\partial n}{\partial t} + n_0 \frac{\partial v_y}{\partial y} + v_0 \frac{\partial n}{\partial y} = 0_*$$
 (4)

$$\frac{\partial \mathbf{v}_{\mathbf{y}}}{\partial \mathbf{t}} + \mathbf{v}_{\mathbf{0}} \frac{\partial \mathbf{v}_{\mathbf{y}}}{\partial \mathbf{y}} = \frac{\mathbf{e}}{\mathbf{m}} \mathbf{E} - \frac{\mathbf{v}_{\mathbf{T}\mathbf{e}}^{2}}{\mathbf{n}_{\mathbf{0}}} \frac{\partial \mathbf{n}}{\partial \mathbf{y}} - \partial \mathbf{v}_{\mathbf{y}} - \omega_{\mathbf{c}} \mathbf{v}_{\mathbf{x}},$$

$$\frac{\partial \mathbf{v}_{\mathbf{x}}}{\partial \mathbf{t}} + \mathbf{v}_{\mathbf{0}} \frac{\partial \mathbf{v}_{\mathbf{x}}}{\partial \mathbf{y}} = -\partial \mathbf{v}_{\mathbf{x}} + \omega_{\mathbf{c}} \mathbf{v}_{\mathbf{y}},$$
(5)

где $v_{Te} = (T/m^{\circ})^{1/2}$ – тепловая скорость электронов, n_o – невозмущенная концентрация электронов проводимости, $v_o = eE/m^{\circ}v \times x \left[1 + (\omega_o/v)^2\right]$ – скорость дрейфа носителей в постоянном электрическом поле, m° , v – соответственно эффективная масса и частота столкновений электронов, $\omega_c = eB_o/m^{\circ}c$ – циклотронная частота. Поле рассеянной волны определяется из уравнения Максвелла

$$\frac{\partial^2 \widetilde{\mathbf{g}}^*}{\partial \mathbf{y}^2} - \frac{1}{c^2} \frac{\partial^2 \widetilde{\mathbf{g}}^*}{\partial \mathbf{t}^2} = \frac{4\pi}{c^2} \frac{\partial \widetilde{\mathbf{j}}}{\partial \mathbf{t}}, \tag{6}$$

где $\tilde{D}' = \varepsilon_{\infty} \tilde{E}' - a \tilde{E}_{o}(\partial u/\partial y); \varepsilon_{o} - диэлектрическая проницае$ $мость на высокой частоте, <math>\tilde{J} = e(n_{o}\tilde{v} + n\tilde{v}_{o}), \tilde{v}_{o}u \tilde{v} - coorber$ ственно скорости осцилляций электронов в поле волны накачки и $в поле рассеянной волны, причем величина <math>\tilde{v}$ удовлетворяет уравнению

$$\frac{\partial \widetilde{\nabla}}{\partial t} = - \vartheta \widetilde{\nabla} + \frac{e}{m} \widetilde{E}^{*}.$$
 (7)

Из системы уравнений (I)-(7) следует дисперсионное уравнение, определяющее связь частоты ω и волнового числа k для низкочастотных возмущений в пьезополупроводнике:

$$\omega^{2} - k^{2} v_{s}^{2} + 1 \frac{k^{2} \omega}{\rho} \eta - \frac{k^{2} k^{2}}{\epsilon_{0} \rho (1 + \delta \epsilon_{0} (\omega, k)/\epsilon_{0})} = \frac{k^{2} a^{2} E_{0}^{2}}{2\rho} \left(\frac{1}{\epsilon_{s} + \delta \epsilon_{0} (\omega_{+}) - c^{2} k_{*}^{2} / \omega_{+}^{2}} + \frac{1}{\epsilon_{s} + \delta \epsilon_{0} (\omega_{-}) - c^{2} k_{*}^{2} / \omega_{-}^{2}} \right), (8)$$

где $v_s = (\lambda/\rho)^{1/2}$ - скорость звука, $k_{\pm} = k \pm k_o$, $\omega_{\pm} = \omega \pm \omega_o$, E_o - амплитуда поля волны накачки

$$\delta \varepsilon_{\Theta}(\omega_{\pm}) = - \frac{\omega_{p}^{2}}{\omega_{\pm}(\omega_{\pm} \pm 1\nu)},$$

$$\delta \varepsilon_{e}(\omega, \mathbf{k}) = - \frac{\omega_{p}^{-}}{(\omega - \mathbf{k} \mathbf{v}_{o})(\omega - \mathbf{k} \mathbf{v}_{o} + i \mathbf{v}) - \mathbf{k}^{2} \mathbf{v}_{Te}^{2} - \omega_{c}^{2}(\omega - \mathbf{k} \mathbf{v}_{o})/(\omega - \mathbf{k} \mathbf{v}_{o} + i \mathbf{v})}$$

 $ω_p = (4\pi e^2 n_o/m^*)^{1/2} - ΠΛΑ3ΜΘΗΗΑΑ ЧΑСΤΟΤΑ.$

3. Из решения уравнения (8) следует, что пороговая амылитуда волны накачки определяется равенством

$$a^2 E_{0, IIOP}^2 / 4 \rho v_8^2 = 8'' \gamma_8 / \omega_8,$$
 (9)

где величина $\varepsilon'' = In(\varepsilon_{\infty} + \delta\varepsilon(\omega - \omega_{0}))$ характеризует затухание рассеянных воли, а величина $\gamma_{\rm S}$ определяет затухание звуковых воли и при выполнении неравенств $\hat{v} > \omega_{\rm S}/|\delta|$; $\nabla_{\rm Te}\omega_{\rm S}/\nabla_{\rm S}$ пмеет вид:

$$\chi_{\rm g} = \Gamma_{\rm g} + \frac{{\rm g}^2}{2} \frac{(\omega_{\rm g}^2/\omega_{\rm R})\delta(1+\omega_{\rm c}^2/v^2)}{(\omega_{\rm g}^2/\omega_{\rm R}^2)\delta^2(1+\omega_{\rm c}^2/v^2)^2 + (1+\omega_{\rm g}^2/\omega_{\rm R}\omega_{\rm p}^*)^2}, \quad (\rm ID)$$

Γμε Γ_s = $\omega_g^2 \eta / 2\rho v_g^2$ =), $K^2 = \beta^2 / \epsilon_o \rho v_g^2$ - постоянная электромагнитной связи, $\omega_R = \omega_p^2 / \epsilon_o \gamma$ - максвелловская частота редаксации, $\omega_D = (v_g^2 / v_{Te}^2)^2$ - частота дифузии, $\delta = 1 - v_o / v_g$, $\omega_g = 2k_o v_g$, $(1/\omega_D^2) = (1/\omega_D) + (\delta \omega_c^2 / \sqrt{3})(1 - \delta \sqrt{2}/\omega_c^2)$.

Следует отметить, что в экспериментах (см. /17-20/) зависимость $\Gamma_{g} \sim \omega_{g}^{2}$ при достаточно больних значениях ω_{g} нарушается, хотя и не очень сильно. Согласно формуле (ID), уменьшение за возникает при сверкзвуковом дрейфе электронов ($\delta < 0$). Чтобы при этом электроакустическая неустойчивость не мешала наблюдению ВРМБ, необходимо выполнение неравенства $\chi_a > 0$, что дает, согласно (ID):

$$\frac{\eta}{\rho v_{g}^{2}} > \kappa^{2} \frac{161}{\omega_{R}} \left(1 + \frac{\omega_{c}^{2}}{\sqrt{2}} \right)_{*}$$
(II)

4. Рассмотрим в качестве примера ВРМБ CO_2 -лазера (= = 1,8.10¹⁴ c⁻¹) в n-InSb при 77 К. Использун данные: = = 2,3.10⁵ см/с /14/, $\varepsilon_{\infty} = 15,7$ /21/, получаем $\omega_{g} = 1,1.10^{10}$ c⁻¹. Данные по поглощению света /21/ дают $\varepsilon'' = 4.10^{-4}$, а затухание поперечных звуковых волн, согласно /19/, равно $\Gamma_{g} = 2,3.10^{6}$ c⁻¹. Величина а в формуле (9) связана с фотоупругой постоянной р соотношением а = $p\varepsilon_{\infty}^{2}$ и согласно /22/ равна а $\simeq 24$. В результате из формулы (9) для величины порогового поля ($\rho = 5,9$ г/см³/22/) без каких-либо внешних постоянных полей получаем $\simeq \approx 4.2.10^{3}$ В/см ($q = 5.10^{4}$ BT/см²).

Для того, чтоби существенно снизить пороговое поле ВРМБ, нужно добиться выполнения неравенства $\gamma_8 \ll \Gamma_8$. Из приведенного выше значения Γ_8 следует $\eta = 1,16 \cdot 10^{-2}$ г/см.с. Гидродинамическое рассмотрение электронов справедливо при $\vartheta \ge 5 \cdot 10^8$ с⁻¹ и мы примем, что $\vartheta = 10^{12}$ с⁻¹. Тогда $\omega_B = 5,3 \cdot 10^8$ с⁻¹ ($v_{Te} = 10^7$ см/с). Рассмотрим образец с концентрацией $z = 3 \cdot 10^{15}$ см⁻³ (при этом $\omega_p = 6,4 \cdot 10^{12}$ с⁻¹, $\omega_R = 4,4 \cdot 10^{13}$ с⁻¹). Электромеханическая постоянная для n-Insb равна $K^2 = 10^{-3}$ /14,23/.

В отсутствие магнитного полн ($\omega_{c} = 0$) из условия $\zeta_{s} \ll \Gamma_{s}$ следует, что существенное понижение порога ВРМБ возникает при $|\delta| \simeq 84$, что соответствует напряженности поля $\Gamma_{c} \simeq 140$ В/см и $v_{o} \simeq 2 \cdot 10^{7}$ см/с. Таким образом, без магнитного поля снижения порога ВРМБ можно достичь только при полях, близких к порогу ударной ионизации /24/.

Рассмотрим случай с магнитным полем. Положим H = 2 к3, что соответствует $\omega_c = 2,7 \cdot 10^{12} \text{ c}^{-1}$ и $\omega_c/3 = 2,7$. В этом случае снижение порога ВРМБ достигается при $|\delta| \simeq 10$, причем скорость дрейфа электронов существенно меньше ($v_c \simeq 2,3 \cdot 10^6 \text{ см/с}$). Из экспериментов (см. /12–15/) известно, что в этом случае ударная

40

ионизация не возникает. Заметим, что условие (II) не позволяет сделать величину Хасколь угодно малой и приводит к ограничению на величину порогового поля

$$\mathbf{E}_{o,\operatorname{nop}}^{2} > \frac{2\omega_{g}\varepsilon^{n}\eta}{a^{2}} \xi \frac{2+\xi}{(1+\xi)^{2}}, \qquad (12)$$

где $\xi = \omega_{\rm g}^2 / \omega_{\rm R} \omega_{\rm D}$. Для рассмотренных нами параметров неравенство (12) выполняется при $E_{\rm 0, nOD} > 400$ В/см (q = 4,2°10² Вт/см²).

Таким образом, прикладывая к образцам полупроводников с высокой подвижностью (типа InSb) относительно слабые постоянные электрические и магнитные поля, можно надеяться на существенное снижение порога BPME.

Поступила в редакцию 5 февраля 1980 г.

Литература

- 1. N. Tzoar, Phys. Rev., 164, 518 (1967).
- 2. Н. Л. Цинцадзе, В. С. Паверман, ФТТ, <u>14</u>, 3427 (1972).
- 3. P. K. Kaw, Journ. Appl. Phys., 44, 1497 (1973).
- 4. Я. И. Кишенко, Н. Я. Коцаренко, ЖТФ, 18, 3295 (1976).
- 5. В. А. Росляков, А. Н. Старостин, ЖЭТФ, <u>73</u>, 1747 (1977).
- 6. Vo Hong Anh, Nguen Van Tang, Phys. Stat. Sol. (b), <u>83</u>, 395 (1977).
- 7. Э. М. Эпштейн, ФПІ, 10, 1164 (1976); 14, 1192 (1979).
- 8. М. В. Вязовский, В. А. Яковлев, ФПП, <u>10</u>, 2208 (1976); <u>11</u>, 809 (1977).
- 9. R. L. Gordon, Journ. Appl. Phys., 39, 306 (1968).
- 10. D. G. Carlson, IEEE Journal, QE-5, 300 (1969).
- 11. J. E. Economon, H. M. Spector, Bull. Am. Phys. Soc., <u>23</u>,392 (1978).
- 12. В. И. Пустовойт, УФН, 97, 257 (1969).
- IЗ. М. Стил, Б. Вираль. Взаимодействие волн в плазме твердого тела. Атомиздат, М., 1973 г.
- 14. Ю. К. Пожела. Плазма и токовне неустойчивости в полупроводниках. Изд. "Наука", М., 1977 г.
- 15. Дж. Такер, В. Рэмптон. Гиперзвук в физике твердого тела.

Изд. "Мир", М., 1975 г.

I6. В. С. Старунов, И. Л. Фабелинский, УФН, <u>98</u>, 441 (1969).

- 17. D. G. Carlson, E. Mosekilde, J. M. Woodall, J. Appl. Phys., <u>42</u>, 925 (1971).
- 18. Ю. В. Илисавский, Л. А. Кулакова, ФТТ, <u>15</u>, 286 (1973).
- 19. С. Н. Иванов, Г. Д. Монсфелд, Е. Н. Хазанов, ФТТ, <u>15</u>, 317 (1973).
- 20. J. Hasson, A. Many, Phys. Rev. Lett., 35, 792 (1975).
- 21. О. Моделунг. Физика полупроводниковых соединений элементов Ш и У групп. Изд. "Мир", М., 1967 г.
- 22. Таблицы физических величин, под. ред. И. К. Кикоина, Атомиздат, М., 1976 г.
- 23. T. Jshii, J. Phys. Soc. Japan, 43, 505 (1977).

24. Л. И. Кац, А. А. Сафонов, А. Ю. Сомов, ФТТ, <u>19</u>, 1837 (1977).