Краткие сообщения по физике № 2 1979

TEMIEPATYPHAN SABUCUMOCTЬ ЭЛЕКТРОСОПРОТИВЛЕНИЯ СПЛАВОВ ND3AL И ND3Ga

Н. Л. Кузьмичев. И. С. Левченко. Г. П. Мотулевич

УДК 537.312.62

Проведены измерения температурной зависимости электросопротивления сплавов Nb_A1 и Nb_Ga в интервалах, соответственно, I8 К – 523 К и 20 К – 293 К. Полученные результаты обрабатывались методом наименьших квадратов по двум математическим моделям: $\rho(T) = \rho_0 + \rho_1 T + \rho_2 \exp(-T_{01}/T)$ и $\rho(T) + \rho_1 T + \rho_2 \exp(-T_{01}/T) + \rho_3 \exp(-T_{02}/T)$. Определены параметры моделей и среднеквадратичные отклонения.

I. Сплавы A-I5, помимо рекордных сверхпроводящих характеристик, обладают также рядом аномалий в свойствах нормального состояния. Одной из особенностей этих сплавов является необнчная температурная зависимость электросопротивления. В работе /I/ впервые для No3Sn было установлено, что в зависимости R(T) имеется член ~ exp(-To/T). Здесь R(T) - электросопротивление при температуре образца Т, То - некая характерная температура. Необычная зависимость R(T) для ванадиевых соединений с решеткой А-15 обнаружена авторами работы /2/. Позже член - ехр(-Т_/Т) наблюдался в сплавах Nb₂Al и Nb₂Ga/3,4/. Однако результаты работ /3,4/ можно считать лишь ориентировочными, поскольку при исследовании NozAl использовался образец не стехиометрического состава, имеющий критическую температуру перехода в сверхпроводящее состояние Т и 13 к При исследовании - NbzGa использовался образец, напыленный на подложку из ниобиевой фольги, что затрудняет выделение истинного электросопротивления пленки. В настоящей работе были выполнены измерения R(T) образцов стехиометрического состава, напыленных на рубиновые подложки.

27

2. Образны пленок Nb₃Al и Nb₃Ga получались совместным испарением компонент в вакууме и осаждением на полированные подложки из рубина по методу, описанному в /4/. Характеристики образцов приводятся в таблице I.

(T)	100
1 9 C TRATES	
TGOMETIC	

Образец	T _c ,K	ATc .K	R(273	K)/R(20	K)
ND3A1	17,2	0,2		3,9	
Nb ₃ Ga	I6,5	3,5		2,2	

Здесь T_C - температура перехода в сверхпроводящее состояние, соответствующая середине скачка сопротивления, ΔT_{C} - ширина перехода.

3. Измерение электросопротивления производилось в температурных интервалах I8 К - 523 К для NbzAl и 20 К - 293 К для NbzGa. Весь рабочий интервал для Nb Al делился на 2 подинтервала: 18 К-273 К и 273 К - 523 К. В каждом подинтервале измерения проводились на специально изготовленных установках. Низкотемпературные измерения (18 К - 293 К) проводились в гелиевой атмосфере. Принимались специальные меры к устранению градиента температуры межну термометром и образцом. В этом интервале температура измерялась платиновым термометром. Точность измерения температуры АТ = = ± 0,01 К. Высокотемпературные измерения (273 К - 523 К) проводились в масляной ванне. Использовалось безкислотное масло, по-ЗВОЛЯМНОЕ ПООВОЛИТЬ МНОГОКРАТНЫЕ ИЗМЕРСНИЯ R(T) ОЛНОГО И ТОГО же образца. Температура измерялась термопарой медь-константан. Точность измерения температуры $\Delta T = \pm 0, I K.$ Измерение сопротивления выполнялось четырехконтактным методом. Пля обеспечения стабильности контактов и устранения шумов, связанных с ними, напылялись алюминиевые контакты, к каждому из которых прижимались игольчатые буферные винты. Точность измерения сопротивления AR/R = $= 10^{-3}(0.1\%)$.

4. Полученные результаты приведены на рис. I-2. Из-за малого масштаба по оси абсцисс для сплава Nb₃Al на рис. I приведены лишь 20-25% точек, равномерно распределенных по всему интервалу. При обработке экспериментальных данных использовались все точки. Обработка проводилась согласно двум математическим моделям: 28 Модель I: $\rho(T) = \rho_0 + \rho_1 T + \rho_2 \exp(-T_{01}/T)$ Модель 2: $\rho(T) = \rho_0 + \rho_1 T + \rho_2 \exp(-T_{01}/T) + \rho_3 \exp(-T_{02}/T)$ Здесь $\rho(T) = R(T)/R(273 \text{ K})$ для Nb₃Al и $\rho(T) = R(T)/R(293 \text{ K})$ для Nb₃Ga. Подбор параметров осуществлялся методом наименьших квадратов. Результаты обработки приводятся в таблице 2.

ToAmmo 2

				a coverance of
Topostompu	Модель I			Модель 2
параметра	Nb ₃ Ga	ND3A1		ND3A1
Температурный интервал, К	20-293	18–273	18–5 23	18-523
T ₀₁ , K	89	157	171	I59
T _{O2} , K	-	-	-	2500
Po	0,462	0,24I	0,226	0,240
P1.10 ⁻³ , K ⁻¹	0,807	I,322	I,937	I,064
P2	0,424	0,726	0,547	0,825
P3		-	-	0,827
s.10 ²	0,43	0,27	I,4	0,33

Здесь T_{01} , ρ_0 , ρ_1 , ρ_2 – параметры первой модели; T_{01} , T_{02} , ρ_0 , ρ_1 , ρ_2 , ρ_3 – параметры второй модели; s – среднеквадратичное отклонение. Значение T_{01} определено с точностью $\Delta T_{01} = \pm 2$ К для Nb₃Al и ± 4 К для Nb₃Ga

Первая модель широко используется в литературе /I,3,4,5,7/. Нами она применялась к разным температурным интервалам.

Из таблици 2 видно, что в низкотемпературном интервале R(T) сплава No₃Al хорошо описывается моделью I (среднеквадратичное отклонение s = 0,27 \cdot 10⁻²), а в полном интервале s = 1,4 \cdot 10⁻, т.е. значение s увеличилось в 5 раз, причем увеличение произошло в основном за счет значений $\rho(T)$ при T> 400 К. Это показывает, что модель I хорошо описывает значения лишь в низкотемпературной области. Значения параметра T₀, для низкотемпературного и полного интервалов равны соответственно 157 К и 171 К. Для сплава No₃Ga измерения проводились в интервала. Среднеквадратичное откло-

29

нение $s = 0,43 \cdot 10^{-2}$, что показывает хорошее согласие с моделью I в указанном интервале. Теоретическая зависимость R(T) приводится на рис. 2 (сплошная кривая). Ориентировочные данные для Ton Nb₃Al и Nb₃Ga, полученные в работах /3,4/, составляли, соответственно, I40 К и I35 К. Эти значения имеют тот же порядок, что и значения, полученные в настоящей работе, но расхождения больше ошибок определения этих параметров. Причина расхождения указывалась во введении.

В работах /8,9/ экспоненциальный член связывался с наличием низкочастотных мод в фононном спектре. Для Nb₃Sn положение низкочастотной моды /9/ хорошо согласуется с T₀ /I,6/. В сплаве Nb₃Al нейтронные измерения /IO/ не показывают наличие низкочастотных мод. Первый максимум находится при T = 215 K.

Данными о фононном спектре Nb₃Ga мы не располагаем. Если связывать T_{OI} с максимумами плотности фононных состояний, 30 _

то можно было бы ожидать удучшения совпедения теории с экспериментом при использовании модели с двумя экспонентами, где T_{OI} и T_{O2} близки к максимумам плотности состояний. Для проверки этого предположения рассматривалась модель 2. Результати обработки экспериментальных данных по модели 2 для сплава N_{5} Аl приводятся в таблице 2 и на рис. I (сплошная кривая). В полном интервале среднеквадратичное отклонение s = 0,33·10⁻², что указывает на хорошее совпадение теоретической кривой с экспериментальными значениями. Увеличение з для полного интервала по сравнению с я для низкотемпературного интервала (18 К – 273 К) вызвано с уменьшением точности измерения температуры в интервале (273 К – 523 К). Значение T_{OI} почти не изменилось. Однако значение $T_{O2} = 2500$ К, что уже нельзя отнести к области фононных частот. В данной работе уточнены значения T_{OI} для проверки Nb₃Al и Nb₃Ga. Для Nb₃Al зависимость R(T) в широком температурном интервале оказывается более сложной функцией, которая не сводится к введению одного экспоненциального члена.

> Поступила в редакцию 17 ноября 1978 г.

Литература

- 1. D. W. Woodard, G. D. Cody, RCA Rev. 25, 392 (1964).
- M. P. Sarachih, G. E. Smith, J. H. Wernich, Can. J. Phys.<u>41</u>, 1542 (1963).
- 3. А. И. Головашкин, И. С. Левченко, Г. П. Мотулевич, ФТТ <u>16</u>. 2100 (1974).
- А. И. Головешкин, И. С. Левченко, Г. П. Мотулевич, Труды ФИАН <u>82</u>, 72 (1975).
- 5. Л. Тестарди, М. Вегер, И. Гольдберг, "Сверхпроводящие соединения со структурой в-вольфрама", "Мир", М., 1977 г.
- 6. А. И. Головашкин, И. С. Левченко, Г. П. Мотулевич, ФММ <u>33</u>. 1213 (1972).
- 7. А. И. Головашкин, Препринт ФИАН # 148, 1977 г.
- 8. С. И. Веденеев, А. И. Головашкин, Г. П. Мотулевич, Письма в ЖЭТФ <u>16</u>, 216 (1972).
- Karlsruhe group, 1974, 1975, Progress Report KFK 2054, KFK 2183, Gesellsehaft für Kernforsehung, M.B.M., Karlsruhe, Germany.
- E. Schneider, P. Schweiss, W. Reichardt, Proc. of the Conf. on Neutron Scattering, Gateinburg, Tennessee, USA, June, 6-10, 1976, v. 1, p. 223.

32 2