Краткие сообщения по физике № 11 1979

ВРЕМЕННЫЕ ХАРАКТЕРИСТИКИ ТОРМОЗНОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ ЛАЗЕРНОЙ ПЛАЗМЫ, ОБРАЗОВАННОЙ ПРИ ВОЗДЕЙСТВИИ НА ТВЕРДУЮ МИПЕНЬ УКИ, СОПРОВОЖДАЕМОГО МАЛЫМ ПРЕДИМПУЛЬСОМ

Е. Л. Тюрин, В. К. Чевокин

JAK 533.95I

Внияслен Временной ход интенсивности тормозного рентгеновского излучения при воздействии на плоскую мишень мощного ультракороткого лазерного импульса, сопровождаемого малым предимпульсом.

Опним из наноолее эффективных методов исследования процесса взаимодействия мощного дазерного излучения с твердыми мине-HAMM ABLACTCA MAATHOCTHKA ILLASMA IO CC DCHTTCHOBCKOMY ISAYYCHMO. Пон использовании импульсов издучения неолимового лазера ллятельностью t. ~ 10-11 с и при плотности потока энергии на поверхности минени ~ 1014 Вт/см2 процесс нагрева и разлета плазмы опосренован электронной теплопровошностьр. что затрушняет теоретический анализ временных характеристик излучения плазын. Обнчный в таких случаях упроценный подход, основанный на усреднении по пространству параметров плазмы при ее алиабатическом расширении в вакуум (см., напр., /І-2/), очевидно, явно недостаточен. В работе /3/ было получено общее решение заначи об эволопии плазмы при воздействии на плоскую минень 8-образного импульса, сопровождаемого предлинульсом, именним на 3-4 порядка меньшую энергию, наличие которого существенно повышает эффективность вложения энергии излучения в мишень /4/. Основываясь на результатах работи /3/. вичеслим временной ход интенсивности TODMOSHORO DEHTREHOBCKORO ESJYGENER US TOHKORO ILASMOHHORO CJOR волизи поверхности твердой плоской мишени.

Для удельного числа нагретых частиц N~10¹⁹ ÷ 10²⁰ см⁻² и температуры т₂ ≥ 100 эВ тормозное излучение носит объемный

3

характер, причем из единицы объема высвечивается поток.

$$J_{\rm T} = 1.34.10^{-19} z n_{\rm e}^{2} T_{\rm e}^{1/2}$$
 (spr/cm³ c), (I)

где п_е - плотность электронов, Т_е - электронная температура (в эргах), z - средний заряд ионов. Согласно /3/, отвлекаясь от возможных турбулентных и ударных неустойчивостей и электронной релаксации, сильно нагретая плазма имеет две характерные области.

I) Область газодинамической разгрузки, $x < x_s$; где $x_s = \int_0^t v_s dt$; $v_s = (T_e z/n_1)^{1/2}$ - квазиизотермическая скорость звука; $n_1 - c$ редняя масса ионов, x - координата, отсчитываемая от первоначального положения поверхности мишени в глубь вещества. Плотность потока излучения Q_T из указанной области (в 2π ср) дается соотношением

$$Q_{T1} = \int_{-\infty}^{T_{g}} J_{T} dx = \frac{1}{2} Q_{0} \tilde{x}_{g} \tilde{T}^{1/2}, \qquad (2)$$

где $\bar{x}_{g} = x_{g}/\delta; \bar{T} = T/\Theta$, причем

$$\delta = \frac{2}{3} \left(\frac{2}{7}\right)^{1/3} \left(\frac{m_{\chi}}{z}\right)^{1/6} z^{1/3} n_0^{-1} \overline{z}_a^{2/3}, \qquad (3)$$

$$\Theta = \left(\frac{7}{2}\right)^{1/3} \left(\frac{\mathbf{n}_{1}}{\mathbf{z}}\right)^{-1/6} \mathbf{z}^{-1/3} \mathbf{E}_{\mathbf{z}}^{1/3}, \quad (4)$$

$$Q_0 = 0,68.10^{-19} zn_0^2 \delta \theta^{1/2},$$
 (5)

Здесь ж = (n^{1/2}e⁴ln A)⁻¹, n и е - масса и заряд электрона; ln A - кулоновский логарийм; n = zn_i; n_i ≈ 5·10²² см⁻³; R поглощенная на единицу повержности мишени энергия.

2) Область нагретого неразгруженного вещества; $x_s < x < x_T$, $x_T - фронт волны электронной теплопроводности. Соответствующая$ величина Q имеет вид

$$Q_{T2} = \int_{x_{a}}^{x_{T}} J_{T} dx = Q_{0} \overline{x}_{s} \overline{T}^{1/2} \left(\frac{\overline{x}_{T}}{\overline{x}_{s}} - 1 \right).$$
(6)

Безразмерные величины $\bar{\mathbf{x}}_{s}$, $\bar{\mathbf{x}}_{T}$ в $\bar{\mathbf{T}}$ есть универсальные функции 4

времени $\bar{t} = t/\tau$, полученные цутем численного расчета на ЭВМ /3/, причем

$$\tau = \frac{2}{3} \left(\frac{2}{7}\right)^{1/2} \left(\frac{m_{\rm H}}{z}\right)^{3/4} x^{1/2} n_0^{-1} E_{\rm m}^{1/2}. \tag{7}$$

Формулы (2), (6) справедливы до момента времени $\bar{t} = 7,4,$ когда волна разгрузки догоняет тепловую волну. В дальнейшем разлет плазмы приближенно адиабатический, при этом

$$Q_{\mathrm{T}} = Q_{\mathrm{T3}} = \left(\frac{\mathbf{n}_{\mathrm{e}}}{\mathbf{n}_{\mathrm{o}}}\right)^{7/3} \left|_{\mathbf{\bar{x}}_{\mathrm{o}} = \mathbf{\bar{x}}_{\mathrm{T}}(\mathbf{\bar{t}} = 7, 4)} \left(\frac{Q_{\mathrm{T1}} + Q_{\mathrm{T2}}}{Q_{\mathrm{T0}}}\right)\right|_{\mathbf{\bar{t}} = 7, 4}.$$
 (8)

Используя общее решение задачи об адиабатическом разлете слоя газа толщиной $\bar{x} = \bar{x}_{T}(\bar{t} = 7,4)$ (см. /5,3/), при $\bar{x} = \bar{x}$ имеем

$$\bar{t} = 3,7\bar{n}^{-1}(1 + \bar{n}^{-2}), \ \bar{t} \ge 7,4,$$
 (9)

где $\bar{n} = (n_a/n_a)^{1/3}$. Подставляя (9) в (8), получим:

$$Q = Q_{T3} = 0,39Q_0 \bar{n}^7.$$
 (10)

Зависимость $Q_{T} = Q_{T}(t)$ в безразмерных переменных представлена на рис. І. Произведем оценки. В случае углеродной минени (z = 6) для $E_{a} = 5 \cdot 10^{3}$ Дж/см² имеем $\delta = 1,3 \cdot 10^{-4}$ см, $\tau \ge 8$ пс, $\Theta \ge 0,54$ кзВ. При этом, как следует из рис. І, длительность рентгеновского импульса из плазмы составляет порядка 60 пс.

Укорочения рентгеновского импульса можно достигнуть, переходя к более тяжелым мишеням, поскольку, как следует из выратония (7), то 5⁻². Использование фильтров также приводит к сокращению импульса. Действительно, для фильтра с граничной длиной волны о при условии bc/о Т>1 приближенно можно записать для интенсивности излучения после прохождения фильтра

$$Q_{\mathbf{p}} = Q_{\mathbf{p}}(\mathbf{t}) \exp(-\mathbf{h} c / \lambda_0 \mathbf{T}). \tag{II}$$

На рис. I пунктиром показана форма импульса для фильтра из Al толщиной 5 мкм (A ≈ 4 Å).

Экспериментальное измерение длительности рентгеновского импульса производилось с помощью рентгеновской элэктронно-оптической камеры на основе ЭОПа УМИ-93СР /6/. Временное разрешение камеры составляло IO пс. Издучение лазера фокусировалось линзой

5

Рис. І. Зависимость плотности потока рентгеновского излучения Q_T(t) от времени. Пунктиром показана форма импульса для фильтра из Al толщиной 5 мкм

на повержность титановой мишени, расположенной в вакууме. Лазер состоял из генератора, работанщего в режиме самосинкроннзации мод, схемы выделения одиночного ничка и многокаскадного усилителя. Энергия выделенного одиночного ничка на выходе лазера составляла (I+3) Дх, контраст излучения не хуме 10⁻³, днаметр иятна фокусировки ~ 100 мкм. Длительность лазерного импульса составляла 10 пс. Рентгеновское излучение лазерной плазмы регистрировалось за фильтром из А1 толщиной 5 мкм. Результат макрофотометрирования показан на рис. 2. Видно, что длительность одиночного рентгеновского импульса на полувнсоте составляет 18 пс, что находится в хорошем согласии со сделанными выне вычислениями и временным разрешением регистрирущей аппаратури. Поступила в редакцию

7 декабря 1978 г.

Литература

H. F. Eacob & Ap., Có. RBAHTOBAH BACKTPOHERA J I, 4 (1971).
D. T. Bradley, A. B. Roddie, W. Sibbet, M. H. Key, M. T. Lamb, C. L. S. Lewis, P. Sachsenmaier, Opt. Comm., <u>15</u>, N 2, 231 (1975).

- 3. А. И. Плис, Е. И. Тирин, В. А. Щеглов, ЖТФ, 42, 2568 (1972).
- 4. Ф. В. Бункин, Письма в ЖЭТФ. 10, 561 (1969).
- 5. Л. Д. Ландау, Е. М. Лифшиц, Механика сплошных сред, ГИТГЛ, М., 1954 г.
- 6. Yu. S. Kasyanov, A. A. Malyutin, M. C. Richardson, V.K.Chevokin, Proc. of the 11th Int. Congress on High Speed Photography, London, p. 561 (1974).