Краткие сообщения по физике № 2 1978

сг_-лазер с оптической накачкой

Б. И. Васильев. А. З. Грасик, А. П. Дядькин, Н. П. Фурзиков

УЛК 621.373.8.038.823

Изучены параметры СГ_а-лазера ($\gamma = 619 - 634 \pm 1$ см⁻¹ с оптической накачкой излучением СО₂лазера. Получена энергия генерации 30 мДж при КПД по поглощенной энергии 4%. Измерены коэфиниент поглощения газа и параметр насыщения. Схема перспективна для работы с высокой частотой повторения.

Молекулярные лазеры с оптической накачкой излучением импульсного CO₂-лазера являются перспективными источниками перестраиваемого излучения в среднем и дальнем ИК диапазоне /I-6/. Такие лазеры позволяют получать большие мощности при высоком КПД преобразования и повышенных частотах повторения. Мощность мыз-лазера, например, достигает 0,5 МВт при КПД 8% /2/. Это позволило разделить изотоп углерода и хлора при многофотонной диссоциации молекулы CCl₄ излучением с длиной волны I2,8I мкм, недоступной для CO₂-лазеров /7/.

В работе /6/ получена генерация на длине волны 16,3 мкм с энергией в импульсе до 4 мДж и КПД по поглощенной энергии около 3% при оптической накачке молекулы СГ₄. В настоящей работе исследованы СГ₄-лазер с энергией генерации до 30 мДж и пути достижения предельных параметров лазера.

Оптическая схема (рис. I) имеет те же особенности, что и описанная в /2/: использование широкого нефокусированного пучка накачки, применение дифракционных решеток для развязки генерации при коллинеарной геометрии накачки. Это позволяет возбуждать большие объемы газа при высоком коэффициенте использования накачки. Отсутствие элементов с низкой дучевой прочностью дает возможность использовать большие плотности накачки при высокой частоте повторения. С0₂-лазер с энергией генерации до 15 Дж использовался для

34

накачки молекул СF₄. Выходным зеркалом служила дифракционная решетка G₁ с выводом излучения в нулевом порядке. Выведенное излучение накачки падало на решетку G₂ нормально к ее поверхнос-

Рис. I. Оптическая схема эксперимента: $M_1 \dots M_3$ – медные зеркала; G_1 , G_2 – дифракционные решетки IOO и 75 штрих/мм соответственно; пунктир – излучение накачки $\lambda = 9,31$ мкм, сплошная линия – излучение генерации $\lambda = 16,3$ мкм

ти, и отражаясь в первом порядке, направлялось в кювету с Площадь сечения пучка накачки в ковете – 6 см². Ковета имела два брюстеровских окна из КВг и полную длину 180 см. Стенки ее охлаждались до температур 120 – 150 К кипящим жидким азотом. Давление газа в ковете контролировалось манометром ВДГ-I. Резонатор сг₄ -лазера был образован зеркалами M₂ и M₃ и решеткой G₂. Излучение генерации выводилось через первый порядок решетки. Энергия излучения измерялась калориметрами КИМ-I и ВЦД-I, временные характеристики – приемником ФПУ-50 и осциллографом С8-2. Для оптической накачки молекулы CF_4 используется поглощение на составной частоте $\vartheta_2 + \vartheta_4 \cdot 3$ то поглощение достаточно заметно только в области линии R(12) CO₂-лазера (IO73,3 см⁻¹). Измерения ковффициента поглощения на этой линии в наших условиях при

Р к с. 2. Зависимость логарифма отношения входной энергии накачки к выходной от плотности поглощенной в газе энергии

T = 295 К дали значение $\alpha = 1,3 \cdot 10^{-4}$ см^{-I}. тор^{-I}, что близко к величине I,I·10⁻⁴ см^{-I}. тор^{-I}, приведенной в работе /6/. При T = = 150 К коэффициент поглощения возрастает до 2,5·10⁻⁴ см^{-I}. тор^{-I}.

Однако эти значения получены при сильном насыщении перехода. Правильное значение сечения поглощения должно быть получено экстраполяцией к нулевой интенсивности насыщающего излучения /8/. На рис. 2 приведена зависимость $\ln(E_{BT}/E_{BMX})$ от плотности поглощенной энергии, полученная при давлении СF₄ 4,4 тор и длине I65 см (T = 295 K). Эта зависимость дает значения коэфициента линейного поглощения $\alpha_0 = (2,0 \pm 0,4) \cdot 10^{-3}$ см⁻¹. тор⁻¹ и параметра насыщения перехода $E_8 = (0,12 \pm 0,03)$ Дж.см⁻². Сечение перехода по этим данным равно $\sigma = (5,8 \pm 1,8) \cdot 10^{-20}$ см². Для получения генерации использовалась схема рис. І. Генерация получена в диапазоне давлений 0,5 – 8 тор, максимум энергии наблюдается при давлении ст., равном 3,5 тор (рис. 3), аналогич-

Рис. 3. Зависимость энертии излучения СF₄-лазера от давления СF₄.

но работе /6/. Добавление в ковету гелия или азота уменьшало энергию импульса вплоть до срыва генерации при парциальных давлениях буфера 5 - 6 Тор. Максимальная зарегистрированная энергия генерации составляла 30 мДж. Отметим, что энергия не падала до нуля при закрытом зеркале M₃, т.е. частично она имеет суперломинесцентное происхождение.

Динамика генерации показана на рис. 4. При низких давлениях импульс генерации Сг₄ лазера имеет два максимума, при повышении давления второй максимум исчезает. Эта картина вместе с зависи-

37

мостью энергии от давления объясняется формой импульса CO₂ лазера и балансом между скоростью накачки и вращательной релаксацией верхнего лазерного уровня. Импульс лазера накачки имеет ин-

Рис. 4. Осциллограммы импульсов генерации СГ₄-лазера при различных давлениях СГ₄. Р_п - мощность генерации (в отн. ед.)

тенсивный передний пик и менее интенсивный послеимпульс. Поэто-. му при низких давлениях СF4 пороговая плотность накачки достигается как в пике, так и в послеимпульсе, при более высоких давлениях - только в пике.

Частота генерации менялась в зависимости от частоты накачки у и настройки резонаторов: от 619 см⁻¹ – при возбуждении линией 38 R(12) ($\partial_{\rm H} = 1073,3 \, {\rm cm}^{-1}$) до 634 <u>+</u> I см⁻¹ – при накачке линией R(10) ($\partial_{\rm H} = 1071,87 \, {\rm cm}^{-1}$). Частота генерации измерялась монохроматором ИКМ-I с призмой СвI и решеткой 50 штрих/мм. Калибровка монохроматора проводилась по линиям CO₂ лазера.

При давлении газа 3,5 тор и плотности энергии накачки 4 Дж.см⁻² (при двойном проходе и малом поглощении) поглощенная энергия составляет - 0,8 Дж. КПД по поглощенной энергии равен ≈4%. Общий КПД низок из-за неэффективного использования энергии СО₂-лазера. Повысить эту эффективность можно несколькими способами: согласованием спектров накачки и поглощения при использовании одночастотного стабильного СО₂-лазера, увеличением сечения пучка накачки, увеличением длины ст₄-лазера, применением усилителя. КПД лазера может быть значительно повышен подавлением перехода)₂₊₄ -)₄ конкурирующего с лазерным переходом, вводом поглощения в области 22 мкм.

Удельная энергия СF₄-лазера в нашем случае составила 0,03 Дж•л⁻¹. Если считать, что накачка перебрасывает 50% всех молекул на верхний лазерный уровень и населенность нижнего уровня мала, при давлении 3,5 тор запасенная удельная энергия равна I,3 Дж•л^{-I}. Вращательная релаксация, конкурирующие переходы и другие причины приводят к тому, что удельная энергия генерации не превышает IO - 20% от запасенной, т.е. 0,I3 - 0,26 Дж•л^{-I}. Для получения более высоких уровней энергии необходимо увеличивать объем активной среды.

Агторы глубоко благодарны Н. Г. Басову за внимание и интерес к работе.

Авторы также признательны Р. В. Амбарцумяну и В. С. Летохову за полезные обсуждения, а А. Б. Ястребкову — за помощь в экспериментах.

Поступила в редакцию 27 декабря 1977 г.

39

Литература

- 1. T. Y. Chang, J. D. McGee, Appl. Phys. Lett., <u>28</u>, 526 (1976); . <u>29</u>, 725 (1976).
- Б. И. Васильев, А. З. Граскк, А. П. Дядькин, Квантовая электроника, <u>4</u>, 1805 (1977).
- 3. R. G. Harrisan, F. A. Al-Watban, Optics Comm., 20, 225 (1977).
- 4. S. M. Ery, Optics Comm., 19, 320 (1976).
- 5. H. R. Schlossberg, H. R. Fetterman, Appl. Phys. Lett., 26, . 316 (1975).
- 6. J. J. Tiee, C. Wittig, Appl. Phys. Lett., 30, 420 (1977).
- 7. R. V. Ambartzumian, A. P. Dyad'kin, N. P. Furzikov, A. Z. Grasiuk, V. S. Letokhov, B. I. Vasiljev, Appl. Phys., 5, 321 (1977).
- 8. В. С. Летохов, А. А. Макаров, Е. А. Рябов, ДАН СССР, <u>212</u>, 75 (1973).