Краткие сообщения по физике № 4

ИССЛЕДОВАНИЕ РАСПРЕДЕЛЕНИЯ ИОННО-ИМПЛАНТИРОВАННЫХ АТОМОВ ЛИТИЯ В АЛМАЗЕ

Е. А. Конодова. В. Ф. Сергиенко, С. Д. Ткаченко, В. А. Дравин. А. В. Спицын

УДК 621.3.15.592

Методом масс-спектроскопии вторичных ионов исследованы профили распределения атомов лития, имплантированных в алмаз при энергии ионов, 30 - 450 кэВ. Показано, что отклонение величины среднего проецированного пробега ионов лития от расчитанного по теории Линдхарда, Шарфа, Шиотта начинается при скоростях ионов, близких к скоростям орбитальных электронов мишени.

Изучение пробегов ионов лития в алмазе представляет интерес с двух точек зрения. Во-первых, внедрение ионов лития в алмаз приводит к образованию полупроводникового слоя **n**-типа, что имеет значение для использования алмаза в полупроводниковой электронике. Во-вторых, поскольку в данном случае мы имеем дело с внедрением легких ионов относительно больших энергий в мишень из легких атомов, представляется возможность выяснить границу применимости теории Линдхарда, Шарфа, Шиотта (ЛШШ) /I/.

В табл. I даны характерные энергии для ионов лития, внедряемых в алмаз.

Таблица І

	S _n = S _e	$E_1 = MV_1^2/2$	EF	Ea	Eø
Энергия кэВ.	4	760	206	- 3,I	45
Ограничение на энергию иона по теории ЛШ	-	E <e<sub>1</e<sub>	e <e<sub>f</e<sub>	E≥E _a	E≤E.

12

Во втором столо́це приведена энергия ионов, при которой ядерная тормозная способность s | равна электронной S_e. Исследование пробегов нами проводились в диапазоне энергий 30 - 450 кзВ. Из табл. I следует, что в данном случае основной вклад в торможение вносят потери на возбуждение электронов. В последующих столо́цах табл. I приведены следующие величины: V₁ - скорость, при которой э́фективный заряд иона лития равен его атомному номеру, соответвственно M_I - масса иона, E_F - энергия иона лития, при которой его скорость равна скорости электрона, находядегося на уровне Ферми в алмазе. При энергии ионов лития свыше E_F соотношение s_с = 1/2 / I / может не выполняться. Поскольку при некоторой энергии зависимость S_e(E) имеет максимум, можно думать, что рост s_e с энергией замедляется и экспериментальные пробеги будут превышать расчетные.

Значения энергии Е и Е являются граничными для расчетов, приведенных в /2/и определяются соотношениями:

$$\begin{split} \mathbf{E}_{a} &= 2\mathbf{E}_{\mathrm{R}} \mathbf{Z}_{1} \mathbf{Z}_{2} (\mathbf{Z}_{1}^{2/3} + \mathbf{Z}_{2}^{2/3})^{1/2} (\mathbf{M}_{1} + \mathbf{M}_{2}) / \mathbf{M}_{2} \\ \\ \mathbf{E}_{0} &= 4\mathbf{E}_{\mathrm{R}}^{2} \mathbf{Z}_{1}^{2} \mathbf{Z}_{2}^{2} (\mathbf{Z}_{1}^{2/3} + \mathbf{Z}_{2}^{2/3}) (\mathbf{M}_{1} / \mathbf{M}_{2} \mathbf{E}_{d}) \,. \end{split}$$

Здесь: $\mathbf{E}_{\mathbf{R}}$ - энергия Ридберга = I3,7 эВ; $\mathbf{E}_{\mathbf{d}}$ - пороговая энергия смещения атома из узла решетки, для алмаза $\mathbf{E}_{\mathbf{d}}$ = 50 эВ /3/; $\mathbf{Z}_{1}, \mathbf{Z}_{2}, \mathbf{M}_{\mathbf{I}}, \mathbf{M}_{2}$ - атомные номера и массы налетающего иона и мишени, соответственно. Как видно из табл. I интервал энергий между $\mathbf{E}_{\mathbf{a}}$ и $\mathbf{E}_{\mathbf{0}}$ значительно меньше исследуемого.

Для определения профиля распределения лития в алмазе использовался метод масс-спектроскопии вторичных ионов. Работа выполнена на комбинированном спектрометре СИМС-Оже фирмы Бальцерс. Давление по остаточным газам не превышало 10⁻⁹ тор. Распыление образца производилось пучком ионов аргона/ с энергией 3 кэВ при плотности тока до 50 мкА/см². Неоднородность плотности тока пучка на площади I мм² составляла примерно 2%. Скорость распыления образца определялась с точностью ± 100 Å по глубине ямы, оставленной на образце пучком. Таким образом при глубине профиля 1000 Å ошибка могла составлять 10%, что явилось основной погрешностью измерения. Стабильность пучка и регистрирующей аппара-

13

туры обеспечивала значительно большую точность. Внедрение лития в алмаз производилось при комнатной температуре. Отжигу образцы не подвергались.

Рис. I. Распределение изотопов 14⁶ и 14⁷, внедряемых в алмаз при Е = IIO коВ: 1 - 14⁶ - до внедрения 14⁷, 2 - 14⁶ - после внедрения 14⁷; 3 - 14⁷

Для учета роли радиационно-стимулированной диффузии имплантируемых ионов в образец алмаза был внедрен изотоп 14 дозой 2.10¹⁵ см⁻², а затем 14⁷ с той же энергией, но дозой 2.10¹⁶ см⁻². На рис. І. показаны профили распределения атомов 14⁶ до внедрения 14⁷ (I), 14⁶ после внедрения 14⁷ (2) и профиль 14⁷ (3). Видно, что последующая имплантация с сольшой дозой 14⁷ изменила профиль распределения 14⁶ наиболее ощутимо на "хвостах" распределения. Ширина кривой распределения на полувысоте изменилась незначительно. В последующих экспериментах дозы не превыпали (2-4)·10¹⁵ см⁻². Поэтому при обсуждении результатов настоящей работы радиационно-стимулированной диффузией можно поенебречь. На рис. 2 представлены профили распределения лития для различных энергий. Видно, что в пределах изменения концентрации лития в 5 раз профили имеют симметричную гауссовскую форму. Мы провели сравнение полученных в эксперименте результатов с теоре-

Рис. 2. Профили распределения атомов лития, внедренных в алмаз. Цифрами обозначена ширина кривой распределения на полувысоте (в Å)

тическими расчетами, приведенными в работе /2/. Использование в /2/ дифференциального сечения Фирсова /4/ для ядерных столкновений при определении пробега в данном случае, видимо, несущественно, так как потери, главным образом, связаны с возбуждением алектронов. На рис. З видно, что до энергии IIO квВ точки хороно укладываются на расчетную кривую, при дальнейшем увеличении энергии разность между экспериментальным пробегом и расчетным увеличивается. Таким образом, невыполнение условия $\mathbf{z} < \mathbf{E}_{\mathbf{F}}$ (см. табл. I) оказывается достаточно критичным.

На рис. 2 приведены значения ширины гауссовского распределения на полувысоте, равные согласно теории /I/ 2,5 AR_p, где AR_p - среднеквадратичное отклонение величины проецированного пробега. Экспериментальные значения в несколько раз меньше рассчитанных в работе /2/. Так как среднеквадратичное отклонение среднего пробега определяется как раз ядерными столкновениями, то расхождение с теорией связано с использованием в /2/ выражения Фирсова для 5.

Для двух энергий 30 и 100 кэВ нами были подсчитаны среднеквадратичные отклонения по теории ЛШШ для полного пробега лития в алмазе. Ширина гауссовского распределения по расчету оказалась равной 500 и 750 Å, соответственно для 30 и 100 кзВ. Экспериментальные значения составляют 450 и 720 Å. Это является удовлетворительным совпадением.

В заключение авторы выражают благодарность профессору В. С. Вавилову за внимание к работе и В. С. Куликаускасу (ЛЯР МГУ) за внедрение лития в образцы.

Поступила в редакцию 20 января 1978 г.

I6

- J. Lindhard, M. Scharf, H. E. Schiott, Kgl. Danske Videnskab Mat. Fys. Medd., <u>33</u>. No. 14 (1963).
- М. А. Кумахов, В. А. Муравлев, Е. Г. Аверьянов, В. А. Симонов, Л. П. Хавкин, Проективные пробеги и разбросы пробегов для 1240 комбинаций ион-мишень в интервале энергий 20 ≤ E ≤1000 кэВ, изд. МГУ, М., 1974 г.
- 3. C. D. Clark, P. J. Kemmey, W. J. Mitchell, Disc. Faraday Soc., 30, 96 (1961).
- 4. О. Б. Фирсов, ЖЭТФ, 32, 1464 (1957).