ВОЗБУЖДЕНИЕ КВАЗИПРОДОЛЬНЫХ ВОЛН В ЗАМАГНИЧЕННОМ ПЛАЗМЕННОМ ВОЛНОВОЛЕ ПУЧКОМ С КОНЕЧНОЙ ПОПЕРЕЧНОЙ СКОРОСТЬЮ

Б. И. Аронов, В. Г. Котетишвили

УЛК 533.951

Рассматривается задача возбуждения и излучения из плазми квазапродольных воли с частотой, близкой к ленгмюровской частоте электронов неподвижной плазми. Раскачка осуществляется с по-мощью релятивистских электронных пучков с конечений поперечной скоростью, пронизнвающих цилиндрический плазменный волновод, помещенный в сильное постоянное осевое магнитное поле.

Рассматривается задача возбуждения и излучения из плазмы квазипродольных воли с частотой, близкой к лениморовской частоте электронов неподвижной плазмы. Раскачка осуществляется с помощью релятивистских электронных пучков с конечной поперечной скоростью, пронизывающих цилиндрический плазменный волновод, помещенный в сильное постоянное осевое магнитное поле \vec{B}_0 . Плазма и пучок бесстолкновительные, холодные, однородные. В этих условиях пучок представляет собой поток осцилляторов. Пучок предполагается моноэнергетическим, причем плотность электронов пучка \mathbf{n}_b много меньше плотности электронов неподвижной плазмы \mathbf{n}_b .

І. Как известно, в вакуумном волноводе в условиях мазерного циклотронного резонанса (МЦР) возбуждаются чисто поперечные алектромагнитные волны на циклотронной частоте алектронов пучка $\omega_{\mathrm{R}} =$ где $Q_e = eB_0/m_0c$, $\xi = (1 - u^2/c^2)^{-1/2}$ — релятивистский $= \Omega_{\Delta}/\chi_{\bullet}$ и - скорость электронов пучка. Возбуждение таких волн, как показано в работе /І/, стаповится значительно эффективнее при заполнении волновода разреженной плазкой, такой, что ленгиюровская частота электронов неподвижной плазмы много меньше $\omega_{\mathbf{R}^{\bullet}}$ $\omega_{\mathbf{n}}$ Оказывается, что в редкой плазме (где все же ъ_л≫ъ_р) в подоб-ных условиях можно возбуждать почти продольные колебания с частоω_р и с инкрементом нарастания, который может превтой порядка зойти соответствующий инкремент для возбуждаемых в условиях МЦР

поперечных волн. Обнадеживает и сделанная в настоящей работе оценка к.п.д. преобразования кинетической энергии электронов пучка в энергию электромагнитного излучения возбуждаемых квазипродольных колебаний.

Исследовавшийся в работе /2/ спектр произвольных (непотенциальных) воли в плазме, полностью заполняющей цилиндрический волновод с металлическими стенками, помещенный во внешнее постоянное осевое магнитное поле, не удается записать в явном виде по причине сложности дисперсионного уравнения. Но в ряде представляющих практический интерес случаев последнее сводится к простым "вырожденным" уравнениям

$$J_1(k_1R) = 0, \quad J_1'(k_1R) = 0.$$
 (1)

Здесь R - радмус волновода, J_1 и J_1' - соответственно функция Бесселя первого рода и ее производная по аргументу, k_1 - действительный корень квадратного уравнения, решение которого имеет вид:

$$\mathbf{k}_{1,2}^{2} = \frac{1}{2\varepsilon_{1}} \left\{ (\varepsilon_{1} + \varepsilon_{3}) \mathbf{k}^{2} - \frac{\omega^{2}}{c^{2}} \varepsilon_{2}^{2} \pm \frac{1}{2\varepsilon_{1}^{2}} \left[(\varepsilon_{1} - \varepsilon_{3}) \mathbf{k}^{2} - \frac{\omega^{2}}{c^{2}} \varepsilon_{2}^{2} \right]^{2} + 4 \mathbf{k}_{z}^{2} \varepsilon_{3} \varepsilon_{2}^{2} \frac{\omega^{2}}{c^{2}} \right\}, \quad (2)$$

где $k^2 = \frac{\omega^2}{c^2} \varepsilon_1 - k_z^2$, k_z — продольное волновое число, ε_1 , ε_2 и ε_3 — компоненти тензора двалектряческой проницаемости системы

$$\varepsilon_{ij} = \begin{pmatrix} \varepsilon_1 & i\varepsilon_2 & 0 \\ -i\varepsilon_2 & \varepsilon_1 & 0 \\ 0 & 0 & \varepsilon_3 \end{pmatrix}$$
 (3)

Следствием соотношений (I) и (2) является дисперсионное уравнение

$$\varepsilon_3(k^4 - \varepsilon_2^2k^4) - k_1^2 \left[(\varepsilon_1 + \varepsilon_3)k^2 - \varepsilon_2^2k^2 \right] + \varepsilon_1k^4 = 0, \quad (4)$$

где
$$\mathbf{k}^2 = \omega^2/c^2$$
, $\mathbf{k}_{\perp}^2 = \frac{\mu_{s1}^2}{R^2}$, $\frac{\mu_{s1}^{'2}}{R^2}$, $\mu_{s1} = \mu_{s1} = \mu_{s1}$ — нули функций

Бесселя J_1 и J_1' .

2. Соотношение (4) все еще весьма сложно для анализа. Оно значительно упрощается в трех случаях: I) $\mathbf{k}_1 \ll \mathbf{k}_2$, 2) $\mathbf{k}_1 \gg \mathbf{k}_2$ и 3) $\mathbf{k} \gg \mathbf{k}_2$. Нас будет интересовать последний, когда фазовая скорость волн намного меньше скорости света. Решения ищем в виде:

$$\omega = k_z u_{\mu} - \omega_B + \delta, \qquad (5)$$

где $\|\delta\| \ll \omega$, u_{\parallel} — продольная компонента скорости электронов пучка $(u^2 = u_{\parallel}^2 + u_{\perp}^2)$. Если $\omega \ll k_{\rm g}c$, то (4) сводится к соотношению, по виду напоминающему уравнение для потенциальных колебаний

$$\varepsilon_{3}k_{z}^{2} + \varepsilon_{1}k_{\perp}^{2} = 0. \tag{6}$$

Компоненты ϵ_1 и ϵ_3 найдем из известного выражения для тензора диалектрической проницаемости, приведенного, например, в /3/ (соотношение $\Pi.24$). При выполнении неравенства

$$\mathbf{k}_{\perp}\mathbf{u}_{\perp}\ll\omega_{\mathbf{B}}$$
 (7)

упомянутое соотномение для $\epsilon_{i,j}$ применимо и для рассматриваемого случая цилиндрической геометрии. В случае δ -образного распределения электронов по импульсам

$$\mathbf{F} = \frac{1}{250p_{10}} \delta(\mathbf{p}_{\perp} - \mathbf{p}_{10}) \delta(\mathbf{p}_{||} - \mathbf{p}_{||0})$$
 (8)

для ε_1 и ε_3 получаем

$$\varepsilon_1 = 1 - \sum \frac{\omega_p^2}{2\omega^2 \gamma} \left\{ \frac{2(\omega - k_z u_{\parallel})^2}{(\omega - k_z u_{\parallel})^2 - \omega_R^2} + \right.$$

$$+ \frac{\mathbf{u}_{\perp}^{2}(\mathbf{k}_{z}^{2} - \omega^{2}/c^{2})\left[(\omega - \mathbf{k}_{z}\mathbf{u}_{\parallel})^{2} + \omega_{B}^{2}\right]}{\left[(\omega - \mathbf{k}_{z}\mathbf{u}_{\parallel})^{2} - \omega_{B}^{2}\right]^{2}},$$
 (9)

$$\epsilon_3 = 1 - \sum \frac{\omega_p^2}{(\omega - k_z u_{\parallel})^2 y} \left(1 - \frac{u_{\parallel}^2}{e^2} \right). \tag{I0}$$

Суммирование проводится по электронам пучка и неподвижной плазмы.

Подставляя (9) и (IO) в (6), находим спектр резонансных колебаний при условии (5) для случая $\omega \ll \omega_{\rm B}$

$$\omega_{0}^{2} = \omega_{p}^{2} \frac{k_{z}^{2}}{k^{2}} \left(1 - \frac{k_{\perp}^{2}}{k^{2}} \frac{\omega_{p}^{2}}{\Omega_{e}^{2}} \right), \tag{II}$$

где $\omega = \omega_0 + \delta$, $k^2 = k_z^2 + k_1^2$, и инкремент их нарастания

$$Im\delta = \frac{\sqrt{2}}{4} \left(\frac{n_b}{\delta n_p} \frac{k_1^2 u_1^2}{\omega_p^2} \frac{k_z}{k} \right)^{1/3} \omega_p. \tag{I2}$$

Последнее соотношение предполагает выполнение неравенства $\omega_R^2 \gg \omega_P^2$.

Если $\mathbf{k}_{\perp} \sim \mathbf{k}_{\mathbf{z}}$, то спектр (II) сильно зависит от номера моди колебания (от $\mu_{\mathbf{s}1} = \mathbf{k}_{\perp} \mathbf{R}$), и главную моду легко выделить из спектра возбуждаемых волн. При этом для выполнения (7) в условиях резонанса (5) в редкой плазме ($\omega_{\mathbf{B}} \gg \omega_{\mathbf{p}} \sim \omega$) необходимо, что- он поперечная составляющая скорости электронов пучка \mathbf{u}_{\perp} была меньше продольной. Наконец, анализируя условие существования вырожденных решений, приходим к выводу, что оно совпадает с принятым допущением $\omega \ll \mathbf{k}_{\mathbf{z}} \mathbf{c}$, и при этом существуют решения только первого типа $\mathbf{J}_1(\mathbf{k}_{\perp} \mathbf{R}) = 0$, т.е. $\mathbf{k}_{\perp} = \mu_{\mathbf{s}1}/\mathbf{R}$.

3. Сравнивая (12) с карактерным инкрементом для МПР (1m6 =

$$=\frac{\sqrt{2}}{4}\left(\frac{\omega_{\rm b}^2}{\Omega_{\rm e}^2}\frac{u_{\rm b}^2}{c^2}\right)^{1/3}$$
 $\Omega_{\rm e}$, где $\omega_{\rm b}$ - ленгмюровская частота электро-

нов пучка), находим условие, когда инкремент (12) больше инкремента МПР:

$$\frac{k_1^2 e^2}{\Omega_p \omega_D} \frac{k_z}{k} > 1. \tag{I3}$$

Заметим, что в случае релятивнотских скоростей электронов нучка $(u\sim c)$ из (I3) следует $k_{\perp}u_{\parallel}\gg \omega_{p}$. При выполнении этого неравенства не возбуждаются квазипродольные колебания со спектром $\omega^{2}=\omega_{p}^{2}-k_{\perp}^{2}u_{\parallel}^{2}$ на черенковском резонансе $\omega=k_{z}u_{\parallel}$, которые

в противоположном предельном случае $(k_{\perp}u_{\parallel}\ll\omega_{p})$ могли он подавить колебания со спектром (II).

Оценим максимальную амплитуду поля волны, воспользовавшись результатами работы /4/, согласно которым при

$$|\delta| = \Delta \omega \tag{14}$$

(где $\Delta\omega$ – изменение частоти, связанное с изменением скорости алектронов пучка) условие резонанса (5) нагушится и усиление волны прекратится. Из (14) и (5) найдем

$$\Delta \chi_{\text{max}} = 1.61 (\chi/\Omega_{e})^{2} [1 + (u_{\parallel}/c\chi)^{2}]^{-1},$$

а с другой стороны, для почти продольного поля можно написать

$$E^2/8\pi \approx n_b m_o c^2 \Delta \chi_{max} (2 - 1/\chi).$$
 (15)

Справа в (15) стоит изменение кинетической энергии алектронного пучка, приходящейся на единицу объема $(n_b mc^2 (\gamma - 1))$, связанное с изменением скорости пучка и γ . Рассчитывая, подобно /2/, γ -компоненту вектора Пойнтинга

$$P_{z} = \frac{c}{4\pi} \int_{0}^{2\pi} d\phi \int_{0}^{R} r dr \overline{(B_{r}B_{\phi} - B_{r}B_{\phi})}$$

с помощью приведенных там же выражений для полей $\mathbf{E_r}$, $\mathbf{E_\phi}$, $\mathbf{B_r}$, $\mathbf{E_\phi}$ и относя полученную величину к потоку кинетической энергии алектронов пучка, найдем коэффициент полезного действия η преобразования кинетической энергии пучка в энергию электромагнитного излучения

$$\eta = \frac{\sqrt{5}(2\chi - 1)}{2(\chi - 1)} \left(\frac{n_b}{n_p \chi} \frac{k_\perp^2 u_\perp^2}{\omega_p^2} \frac{k^2}{k_z^2} \right)^{1/3} \frac{k_\perp^2}{k^2} \frac{\omega_p^2}{\omega_p^2} \frac{J_1^2(\mu_{os})}{(1 + (u_\parallel^2/\sigma^2\chi^2))}. \quad (16)$$

Поступила в редакцию 6 сентября 1976 г.

Литература

- В. И. Кременцов, М. С. Рабинович, А. А. Рухадзе, П. С. Стрелков, А. Г. Шкварунец, ЖЭТФ, 69, 1219 (1975).
- 2. B. I. Aronov, L. S. Bogdankevich, A. A. Ruchadze, Plasma Phys., 18, 101 (1976).
- 3. А. Б. Михайловский, Теория плазменных неустойчивостей, Атомиздат, М., 1971 г.
- 4. Л. С. Богданкевич, А. А. Рухадзе, В. Г. Рухлин, ЖТФ, <u>47</u>, 3, 482 (1977).