ЛІКМИНЕСЦЕНТНЫЕ СВОЙСТВА ГЕТЕРОСТРУКТУР И СВЕТОДИОДЫ НА ОСНОВЕ МНОГОКОМПОНЕНТНЫХ ТВЕРДЫХ РАСТВОРОВ В ДИАПАЗОНЕ I - 2 МКМ

## Л. М. Долгинов. Л. В. Дружинина, П. Г. Елисеев. М. Г. Мильвидский, Б. Н. Свердлов. Е. Г. Шевченко

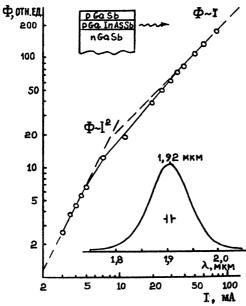
УДК 621.382.3

Благодаря применению гетероструктур на основе многокомпонентных твердых растворов полупроводниковых соединений  $A^3B^5$  удалось существенно улучшить характеристики светодкодов, расотакщих в дваназоне длин волн I-2 мкм.

Применение многокомпонентных твердых растворов расширяет возможности создания совершенных гетеропереходов и источников излучения на их основе в широком спектральном диапазоне /I/. В настоящем сообщении описаны гетероструктуры с использованием четырежкомпонентных составов Gainpas, Ingasbas и Algasbas. На их основе созданы и исследованы электролиминесцентные диоды (светодиоды) в диапазоне I-2 мкм, где имеется ряд "окон" прозрачности атмосферы, а также линии поглощения газовых примесей, обнаружение которых в атмосфере имеет практический интерес.

Гетероструктуры двухстороннего типа (ДГС) изготавливались методом жидкофазовой эпитаксии на подложках фосфида индия и антимонида галлия. Состави твердых растворов выбирались в согласии с требованием сохранения периода реметки ("изопериодическое" замещение) во всей гетероструктуре. Здесь описываются гетероструктуры, изопериодические с бинарными соединениями подложки и не требующие приготовления переходных градиентных слоев между подложной и гетероструктурой. Последовательные слои в гетероструктурых даны в таблице I (излучающий слой отмечен звездочкой). Следует отметить относительную простоту гетероструктур на GaInpas и Ingasbas. в которых для создания ДГС достаточно нарастить два слоя. В этих ДГС подложка прозрачна для излучения, испускаемого четырех-

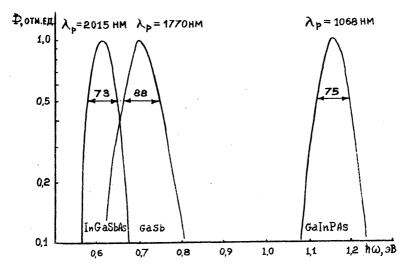
компонентным составом, что способствует улучшению эффективности светодиодов.


Таблица I Слом в гетероструктурах

| 3636<br>IIII   | Подложка                  | Гетероэпитаксиальные слои               |                            |            | Длина<br>волны                      |
|----------------|---------------------------|-----------------------------------------|----------------------------|------------|-------------------------------------|
|                |                           | I                                       | 2                          | 3          | при<br>300 <sup>0</sup> К, нм       |
| I.<br>2.<br>3. | n-InP<br>n-GaSb<br>n-GaSb | p-GaInPAs*<br>n-AlGaSbAs<br>p-InGaSbAs* | p-InP<br>p-GaSb*<br>p-GaSb | p-AlGaSbAs | 1800-2020<br>1700-1800<br>1000-1200 |

Эпитаксиальные слои были изучены с помощью фотолиминесцентных методов. Анализ распределения интенсивности и длины волны фотолиминесценции (ФЛ) на косых шлифах гетероструктур позволил установить профиль ширини запрещенной зоны Е в гетероструктурах, а также выявить случаи, когда в многокомпонентных растворах имеется градиент Е, вследствие изменения состава и когда совершенство гетерограниц с точки зрения близости периодов решетки непостаточно. В этих последних случаях неизбежно происходило снижение интенсивности ФЛ в окрестности дефектной гетерограницы. Оценки внутреннего квантового выхода излучательной рекомбинации η, по измерениям ФЛ привели к виводу, что в излучающих слоях гетероструктур  $\eta_i$  не ниже 0,5, а в слоях GaInPAs он, по-видимому, близок к единице (при комнатной температуре). Ширина спектральной полоси ФЛ в твердых растворах была в 1,5 - 2 раза больше, чем в бинарных соединениях, что связано с локальными вариа-IDENMI COCTABA.

Светодиоды на основе полученных гетероструктур изготовлялись в планарном варианте (вывод излучения через широкозонный слой по нормали к излучающему слою) или в "торцевом" варианте (вывод излучения вдоль излучающего через боковую грань слоя, т.е. геометрия инжекционного лазера). Типичное поведение интенсивности излучения светодиода и спектр показаны на рис. I. Сравнение спектров электролюминесценции различных гетероструктур можно сделать по рис. 2.


Внешний квантовый выход  $\eta$  светодиода в пренебрежении перепоглощением и переиздучением внутри кристализ может бить приближенно представлен в виде



Р и с.І. Излучение гетероструктури Gasb - GaInAssb - Gasb (светодиод торцевого типа); зависимость интенсивности излучения  $\Phi$  от
тока і и спектр излучения при плотности тока около 50 A/cm²,  $T = 300^{\circ} K$ 

$$\eta = \eta_1 \frac{1}{2} (1 - R)(1 - \cos \theta_T),$$
 (I)

где R — коэффициент отражения кристалла,  $\Theta_{\mathbf{T}}$  — угол полного внутреннего отражения. Стандартные значения по формуле (I) для диомов с InP составляют 0,016 $\eta_{\mathbf{i}}$ , а для диодов с Gasb 0,012 $\eta_{\mathbf{i}}$ . В планарных светодиодах удается получить  $\eta_{\mathbf{i}} \approx 0,9\div1,0$ , как видно из таблицы 2, где дана сводка характеристик светодиодов и некоторые литературные данные для сравнения. Превышение стандартного значения  $\eta$  получено в светоднодах на GaInPas, что



Р и с.2. Спектры взлучения светоднодов на основе гетероструктур. Пирина полос на полувысоте дана в мэв,  $T=300^{\circ}$ К

Таблица 2 Характеристики светоднодов ИК диапавона I,0 - 2,0 мкм.

1) торцевой вариант, 2) планарный вариант,

3) то же с полимерным куполом

| Излучанный<br>материал | Длина волны,<br>ни     | Пирина<br>полосн,<br>ни | Внешний<br>квантовый<br>выход, % | Сонлиса         |
|------------------------|------------------------|-------------------------|----------------------------------|-----------------|
| GaInAs<br>GaAsSb:Si    | 1060<br>1030           | 60<br>79                | ~ I<br>~0,7                      | /2/<br>/3/      |
| GaInPAs                | I050-<br>-T090         | 60<br>80                | I) I,6<br>2) 5,0<br>3) 8,4       | Hact.<br>padota |
| InGaSbAs               | 1120<br>1920-<br>-2015 | 80<br>225               | I) I,2<br>2) 0,95                |                 |
| GaSh                   | 1770                   | sto                     | I) 0,5                           |                 |

обусловлено многократным переизлучением в узкозонном олое с высоким внутренним квантовым выходом. Данные в таблице 2 свидетельствуют о значительном прогрессе характеристик ИК светоднодов, достигнутом благодаря применению многокомпонентных полупроводниковых твердых растворов.

> Поступила в редакцию 26 марта 1976 г.

## Литература

- І. А. П. Богатов, Л. М. Долгинов, Л. В. Друкинина, П. Г. Елисеев, Б. Н. Свердлов, Е. Г. Шевченко. Квантовая электроника, І. № 10, 2294 (1974).
- 2. R. E. Nahory, M. A. Pollack, J. C. DeWinter. Appl. Phys.Lett., 25, 146 (1974).
- 3. S. K. Brierley, C. G. Fonstad. J. Appl. Phys., 46, 3648 (1975).