УДК 539.1.074.3

## ЛЕГИРОВАННЫЙ ИОНАМИ ФОСФОРА $P^{5+}$ СЦИНТИЛЛЯЦИОННЫЙ КРИСТАЛЛ $Gd_2SiO_5:Ce^{3+}$

М. В. Белов<sup>1</sup>, Ю. Д. Заварцев<sup>2</sup>, М. В. Завертяев<sup>1</sup>, А. И. Загуменный<sup>2</sup>, В. А. Козлов<sup>1</sup>, С. А. Кутовой<sup>2</sup>, Н. В. Пестовский<sup>1</sup>, С. Ю. Савинов<sup>1</sup>

Методом Чохральского выращены легированные ионами  $Ce^{3+}$ ,  $P^{5+}$ ,  $Ca^{2+}$ ,  $Zn^{2+}$  кристаллы  $Gd_2SiO_5$ . Изучены спектры импульсной катодолюминесценции, световой выход и время сцинтилляции под действием гаммавозбуждения. Впервые показано, что дополнительное легирование ионами фосфора  $P^{5+}$  уменьшает растрескивание кристалла в процессе изготовления сцинтилляционных элементов, а также увеличивает световой выход сцинтилляции по сравнению с коммерческим кристаллом  $Gd_2SiO_5:Ce^{3+}$ .

**Ключевые слова**: сцинтилляционные монокристаллы, легирование, кислородные вакансии, время затухания сцинтилляций.

Легированный церием оксиортосиликат гадолиния (Gd<sub>2</sub>SiO<sub>5</sub>:Се или GSO:Ce) был впервые выращен и изучен авторами работы [1]. В дальнейшем в ряде работ сцинтилляционные характеристики кристаллов GSO:Се детально изучались с целью использования в позитрон-эмиссионной томографии, детекторах гамма- и рентгеновского излучения, а также в экспериментах по физике высоких энергий [2–4]. В связи с возрастающей востребованностью кристаллов Gd<sub>2</sub>SiO<sub>5</sub>:Се компания Hitachi Chemical Co. (Япония) разработала промышленную технологию выращивания этих кристаллов диаметром 105 мм и длиной 290 мм [5]. Надо отметить, что задача снижения времени сцинтилляций кристаллов GSO:Се (40–60 нсек) является крайне актуальной в настоящее время. В начале наших исследований кристаллы Gd<sub>2</sub>SiO<sub>5</sub>:Се<sup>3+</sup> были легированы ионами кальция для снижения времени сцинтилляции, однако увеличение в исходном расплаве концентрации ионов кальция до 1.5 ат.% Ca<sup>2+</sup> приводит к росту поликристаллического непрозрачного керамического слитка. Подобное явление носит название

 $<sup>^1</sup>$ ФИАН, 119991 Россия, Москва, Ленинский пр-т, 53; e-mail: kozlovva@lebedev.ru.

 $<sup>^2</sup>$ ИОФ РАН, 119991 Россия, Москва, ул. Вавилова, 38.

концентрационного переохлаждения, которое объяснено в учебниках по росту кристаллов и многочисленных публикациях для различных легирующих ионов. В частности, в процессе выращивания кристалла Gd<sub>2</sub>SiO<sub>5</sub>:Ce<sup>3+</sup>,Ca<sup>2+</sup> на фронте кристаллизации между кристаллом и расплавом образуется диффузионный слой, в котором концентрация ионов Ca<sup>2+</sup> больше, чем в расплаве, коэффициент распределения ионов Ca<sup>2+</sup> меньше единицы, поэтому в момент кристаллизации часть ионов Ca<sup>2+</sup> встраивается в кристаллическую решетку, а другая часть выталкивается в диффузионный слой, что приводит к увеличению концентрации примерно до 2.5 ат.% Ca<sup>2+</sup> перед фронтом кристаллизации заряда в кристаллической решетке растущего кристалла. Аналогичный технологический метод может быть перспективным для выращивания Gd<sub>2</sub>SiO<sub>5</sub>:Ce<sup>3+</sup> с высокой концентрацией ионов Ca<sup>2+</sup> в расплаве.

В кристаллической решетке  $Gd_2SiO_5$  ионные радиусы  $Gd^{3+}$  и  $Si^{4+}$  равны соответственно R = 0.94 Å и R = 0.39 Å [7], поэтому легирование  $Gd_2SiO_5:Ce^{3+}$  ионами  $Ca^{2+}$  (R = 1.04 Å) будет происходить с компенсацией заряда, если выбрать в качестве второго легирующего иона фосфор  $P^{5+}$ , имеющий ионный радиус R = 0.35 Å, мало отличающийся от ионного радиуса  $Si^{4+}$ . А именно, по схеме:  $Gd^{3+} + Si^{4+} \rightarrow Ca^{2+} + P^{5+}$ , для которой выполняется равенство зарядов ( $3^+$ ) + ( $4^+$ ) = ( $2^+$ ) + ( $5^+$ ).

В данной работе впервые выращены легированные ионами Ce<sup>3+</sup>, P<sup>5+</sup>, Ca<sup>2+</sup>, Zn<sup>2+</sup> кристаллы Gd<sub>2</sub>SiO<sub>5</sub>, и изучены их сцинтилляционные свойства.

Высокочистые реактивы SiO<sub>2</sub>, Gd<sub>2</sub>O<sub>3</sub>, CeO<sub>2</sub>, CaO, ZnO, P<sub>2</sub>O<sub>5</sub> с содержанием основного вещества 99.99% использовали в качестве исходных компонентов. Выращивание кристаллов GSO:Ce<sup>3+</sup>, GSO:Ce<sup>3+</sup>, P<sup>5+</sup>, GSO:Ce<sup>3+</sup>, Ca<sup>2+</sup>, P<sup>5+</sup>, GSO:Ce<sup>3+</sup>, Zn<sup>2+</sup>, P<sup>5+</sup> проводили методом Чохральского из иридиевого тигля в газовой среде 99.9% Ar+0.01%O<sub>2</sub>. Составы исходных расплавов и свойства выращенных из них сцинтилляционных кристаллов приведены в табл. 1.

Дополнительное легирование ионами фосфора  $P^{5+}$  позволяет выращивать монокристалл из расплавов с высокой концентрацией кальция 1.2.ат.%Ca<sup>2+</sup>, в то время как в отсутствие  $P^{5+}$  имеет место рост GSO:Ce<sup>3+</sup>,Ca<sup>2+</sup> в виде поликристаллического стержня. Важным технологическим свойством легированных ионами  $P^{5+}$  кристаллов является значительное снижение вероятности растрескивания при разрезании и полировке сцинтилляционных элементов по сравнению с коммерческим кристаллом GSO:Ce<sup>3+</sup>. Коммерческий кристалл, легированный ионами церия и циркония Zr-GSO:1%Ce<sup>3+</sup> (размером  $4 \times 4 \times 22$  мм<sup>3</sup> для медицинских томографов) компании Hitachi Chemical Co. Ltd., использовали для измерения и сравнения с параметрами образцов, полученных в данной работе.

Таблица 1

| Монокристалл                                            | Исходный состав расплава                               | Время             | Световыход |
|---------------------------------------------------------|--------------------------------------------------------|-------------------|------------|
|                                                         |                                                        | сцинтилляции, нс  | Фотон/МэВ  |
| Монокристалл                                            | $Gd_{1.988}Ce_{0.006}Ca_{0.006}SiO_{4.997}$            | $31.79 \pm 0.33$  | 2390       |
| $GSO:0.3\%Ce^{3+},$                                     |                                                        |                   |            |
| 0.3%Ca <sup>2+</sup>                                    |                                                        |                   |            |
| Монокристалл № 1                                        | $Gd_{1.988}Ce_{0.006}Ca_{0.006}Si_{0.996}P_{0.004}O_5$ | $60.37 \pm 0.73$  | 8100       |
| $GSO:0.3\%Ce^{3+},$                                     |                                                        |                   |            |
| 0.3%Ca <sup>2+</sup> , $0.4%$ P <sup>5+</sup>           |                                                        |                   |            |
| Монокристалл № 2                                        | $Gd_{1.982}Ce_{0.006}Ca_{0.012}Si_{0.992}P_{0.008}O_5$ | $61.23 \pm 0.605$ | 7350       |
| $GSO:0.3\%Ce^{3+},$                                     |                                                        |                   |            |
| 0.6%Ca <sup>2+</sup> , $0.8%$ P <sup>5+</sup>           |                                                        |                   |            |
| Монокристалл                                            | $Gd_{1.994}Ce_{0.006}Si_{0.994}P_{0.006}O_{5.003}$     | $73.96 \pm 0.55$  | 11850      |
| GSO: $0.3\%$ Ce <sup>3+</sup> , $0.6\%$ P <sup>5+</sup> |                                                        |                   |            |
| Монокристалл                                            | $Gd_{1.994}Ce_{0.006}Si_{0.998}P_{0.012}O_{5.006}$     | $69.65 \pm 0.42$  | 10300      |
| $GSO:0.3\%Ce^{3+}, 1.2\%P^{5+}$                         |                                                        |                   |            |
| Монокристалл                                            | $Gd_{1.978}Ce_{0.006}Zn_{0.016}Si_{0.984}P_{0.016}O_5$ | $72.82 \pm 0.405$ | 9300       |
| $GSO:0.3\%Ce^{3+},$                                     |                                                        |                   |            |
| 0.8%Zn <sup>2+</sup> ,1.6%P <sup>5+</sup>               |                                                        |                   |            |
| Монокристалл Hitachi                                    | Состав расплава неизвестен                             | $41.71 \pm 0.13$  | 9790       |
| Chemical Co., Ltd.                                      |                                                        |                   |            |
| $Zr-GSO:1\%Ce^{3+}$                                     |                                                        |                   |            |

Составы исходных расплавов и сцинтилляционные характеристики кристаллов

С целью изучения спектров импульсной катодолюминесценции (ИКЛ) новых кристаллов GSO:Ce<sup>3+</sup>,Ca<sup>2+</sup>,P<sup>5+</sup> использовалась установка на основе ускорителя электронов РАДАН-ЭКСПЕРТ, генерирующего импульсы электронов со средней энергией 150 кэВ, длительностью 2 нс и пиковой плотностью мощности 10 MBt/cm<sup>2</sup>. Для изучения световыхода новых сцинтилляторов GSO:Ce<sup>3+</sup>,P<sup>5+</sup>, GSO:Ce<sup>3+</sup>,Ca<sup>2+</sup>,P<sup>5+</sup> (табл. 1) использовались спектры полного поглощения  $\gamma$ -квантов (фотопики) от радиоактивного источника <sup>137</sup>Cs на основе методики, описанной в [6]. Исследуемый сцинтилляционный кристалл с помощью оптической смазки был соединен с фотоумножителем Нататаtsu R4125Q с кварцевым окном. Все остальные поверхности кристаллов были завернуты в 5–7 слоев тефлоновой ленты. Размеры образцов для исследований световыхода были  $4 \times 4 \times 3$  мм<sup>3</sup>. Времена высвечивания кристаллов GSO исследовались на специальной установке с ис-

пользованием метода "задержанных совпадений", который заключается в измерении распределения временных интервалов  $\Delta t$  между возбуждением в сцинтилляторе и образованием фотоэлектрона на фотокатоде ФЭУ [6].

На рис. 1 представлена зависимость интенсивности высвечивания сцинтилляторов GSO:Ce<sup>3+</sup>,Ca<sup>2+</sup> и GSO:Ce<sup>3+</sup>,Ca<sup>2+</sup>,P<sup>5+</sup> от времени. Кристаллы GSO:Ce<sup>3+</sup>,Ca<sup>2+</sup> с концентрацией ионов Ca<sup>2+</sup> 0.3 ат.% обладают "быстрым" временем высвечивания ~32 нс. Введение в расплав дополнительно ионов фосфора P<sup>5+</sup> в концентрации 0.4 ат.% от концентрации ионов кремния и сохранение концентрации ионов Ca<sup>2+</sup> 0.3 ат.% обуславливает рост кристалла с "длинным" временем высвечивания ~61 нс.



Рис. 1: Зависимость интенсивности высвечивания сцинтилляторов  $GSO:Ce^{3+}, Ca^{2+}$ (a) и  $GSO:Ce^{3+}, Ca^{2+}, P^{5+}$  (b) от времени.

Это различие обусловлено тем, что в кристаллической решетке GSO замещение трехвалентных ионов  $\mathrm{Gd}^{3+}$  на двухвалентные ионы  $\mathrm{Ca}^{2+}$  создает кислородные вакансии рядом с ионом кальция. Кислородные вакансии уменьшают световой выход и время сцинтилляции. С другой стороны, на фронте кристаллизации растущего кристалла происходит встраивание в кристаллическую решетку иона  $\mathrm{Ca}^{2+}$  в додекаэдрическую позицию кислородного полиэдра  $\mathrm{GdO}_8$ , а ион фосфора  $\mathrm{P}^{5+}$  замещает кремний в сосседнем кислородном тетраэдре  $\mathrm{SiO}_4$ . По мере увеличения концентрации ионов  $\mathrm{P}^{5+}$  происходит снижение концентрации кислородных вакансий, находящихся рядом с ионом  $\mathrm{Ca}^{2+}$ , а при равенстве в расплаве концентраций ионов  $\mathrm{Ca}^{2+}$  и  $\mathrm{P}^{5+}$  вакансии в кристалле не образуются. Результатом этого является увеличение времени сцинтилляции в кристаллах, легированных одновременно ионами Ca<sup>2+</sup> и P<sup>5+</sup>, а также возрастание световыхода кристаллов GSO:Ce<sup>3+</sup>,Ca<sup>2+</sup>,P<sup>5+</sup> по сравнению с кристаллами, легированными только ионами Ca<sup>2+</sup> (см. табл. 1).

Измерение сцинтилляционных свойств двух монокристаллов № 1 GSO:0.3%Ce<sup>3+</sup>, 0.3%Ca<sup>2+</sup>,0.4%P<sup>5+</sup>, и № 2 GSO:0.3%Ce<sup>3+</sup>, 0.6%Ca<sup>2+</sup>,0.8%P<sup>5+</sup> позволило однозначно выявить влияние состава на "длинное" время высвечивания. Характерной особенностью монокристаллов № 1 и № 2 является низкая концентрация кислородных вакансий в кислородной подрешетке. Напротив, в монокристалле GSO:0.3%Ce<sup>3+</sup>, 0.3%Ca<sup>2+</sup> имеются кислородные вакансии, возникающие за счет встраивания ионов Ca<sup>2+</sup> в кристаллическую решетку. Это позволяет сделать вывод, что "быстрое" время высвечивания ~32 нс связано с наличием кислородных вакансий, а не с наличием ионов кальция Ca<sup>2+</sup> в кристаллической решетке сцинтиллятора GSO:Ce<sup>3+</sup>. Были впервые выращены также кристаллы GSO:Ce<sup>3+</sup>, легированные только ионами P<sup>5+</sup>.



Рис. 2: Спектр ИКЛ (a) и зависимость интенсивности высвечивания сцинтиллятора  $GSO:0.3\% Ce^{3+}, 0.6\% P^{5+}$  от времени (b).

На рис. 2 показаны спектр ИКЛ и зависимость интенсивности высвечивания от времени для монокристалла GSO:0.3%Ce<sup>3+</sup>,0.6%P<sup>5+</sup>. Максимум ИКЛ спектра расположен при ~450 нм, время высвечивания равно ~74 нс.

В процессе роста кристалла GSO:0.3%Ce<sup>3+</sup>,0.6%P<sup>5+</sup> происходит замещение четырехвалентных ионов кремния Si<sup>4+</sup> ионами пятивалентного фосфора P<sup>5+</sup>. При этом на фронте кристаллизации создается избыток ионов кислорода, что уменьшает в растущем кристалле количество ростовых дефектов, в основном кислородных вакансий, концентрация которых снижается или устраняется полностью. Поэтому монокристалл GSO:0.3%Ce<sup>3+</sup>,0.6%P<sup>5+</sup> характеризуется световым выходом 11850 фотон/МэВ, который превышает этот параметр коммерческого кристалла Zr-GSO:1%Ce<sup>3+</sup> (табл. 1).



Рис. 3: Амплитудные распределения сцинтилляторов  $GSO:0.3\% Ce^{3+}$ ,  $0.6\% P^{5+}$  (a)  $GSO:0.3\% Ce^{3+}$ ,  $1.2\% P^{5+}$  (b), облученных  $\gamma$ -квантами от источника <sup>137</sup> Cs.

На рис. 3 представлены амплитудные распределения сцинтилляторов GSO:0.3%Ce<sup>3+</sup>, 0.6%P<sup>5+</sup>, GSO:0.3%Ce<sup>3+</sup>, 1.2%P<sup>5+</sup>, облученных  $\gamma$ -квантами от источника <sup>137</sup>Cs. Видно, что с ростом в расплаве концентрации примеси P<sup>5+</sup> световыход монокристалла GSO:Ce падает (табл. 1).

Возрастание концентрации фосфора до 1.2%  $P^{5+}$  вызывает появление дефектов в кислородной подрешетке, поскольку в тетраэдрической координации по кислороду ион  $P^{5+}$  связан тремя химическими связями с тремя соседними ионами кислорода в верпинах тетраэдра, а с четвертым ионом кислорода – двумя связями. В бездефектной кристаллической структуре GSO ион Si<sup>4+</sup> связан одинарной химической связью с четырьмя ионами кислорода в вершинах тетраэдра. Данный вид дефектов снижает световой выход и влияет на другие свойства кристалла. В частности, различие в химических связях в тетраэдрах Si<sup>4+</sup> и P<sup>5+</sup>, а также статистическое замещение в кристаллической решетке основного элемента (SiO<sub>4</sub>)<sup>4-</sup> на небольшое количества дефектов (PO<sub>4</sub>)<sup>3-</sup> резко снижает вероятность растрескивания по плоскости (100) в кристалле Gd<sub>2</sub>SiO<sub>5</sub>:Се. Таким образом, методом Чохральского выращены кристаллы GSO:Ce<sup>3+</sup>,Ca<sup>2+</sup>,P<sup>5+</sup> и GSO:Ce<sup>3+</sup>,P<sup>5+</sup>. Дополнительное легирование ионами фосфора P<sup>5+</sup> позволяет выращивать монокристалл из расплавов с высокой концентрацией кальция 1.2%Ca<sup>2+</sup>, а также позволяет существенно уменьшить концентрацию кислородных вакансий, которые являются центрами тушения люминесценции, и увеличить световыход.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 18-08-01060).

## ЛИТЕРАТУРА

- [1] K. Takagi and T. Fukazawa, Appl. Phys. Lett. 42, 43 (1983).
- [2] C. L. Melcher and J. S. Schweitzer, IEEE Transaction on nuclear science 37(2), 161 (1990).
- [3] A. Nassalski, M. Kapusta, T. Batsch, et al., IEEE Ttransaction on nuclear science 54(1), 3 (2007).
- [4] В. А. Калинников и Е. П. Величева, Письма в ЭЧАЯ **11**(3), 418 (2014).
- [5] K. Kurasige, A. Gunji, M. Kamada et al., IEEE Transaction on nuclear science, 51(3), 742 (2004).
- [6] Ю. Д. Заварцев, М. В. Завертяев, А. И. Загуменный и др., Краткие сообщения по физике ФИАН 40(2), 13 (2013).
- [7] Г. Б. Бокий, Кристаллохимия (М., Наука, 1971), с. 400.

Поступила в редакцию 1 июля 2019 г.

После доработки 19 декабря 2019 г.

Принята к публикации 23 декабря 2019 г.